Abstract:
A patient monitor has multiple sensors adapted to attach to tissue sites of a living subject. The sensors generate sensor signals that are responsive to at least two wavelengths of optical radiation after attenuation by pulsatile blood within the tissue sites.
Abstract:
A method and an apparatus measure blood oxygenation in a subject. A light source is activated to cause a first emission at a first wavelength and a second emission at a second wavelength. A detector detects a composite signal indicative of an attenuation of the first and second wavelengths by tissue of a patient. The composite signal is demodulated into a first intensity signal and a second intensity signal. Blood oxygenation in the subject is determined from the first and second intensity signals.
Abstract:
Embodiments of the present disclosure provide a hypersaturation index for measuring a patient's absorption of oxygen in the blood stream after a patient has reached 100% oxygen saturation. This hypersaturation index provides an indication of the partial pressure of oxygen of a patient. In an embodiment of the present invention, a hypersaturation index is calculated based on the absorption ratio of two different wavelengths of energy at a measuring site. In an embodiment of the invention, a maximum hypersaturation index threshold is determined such that an alarm is triggered when the hypersaturation index reaches or exceeds the threshold. In another embodiment, an alarm is triggered when the hypersaturation index reaches or falls below its starting point when it was first calculated.
Abstract:
A physiological parameter tracking system has a reference parameter calculator configured to provide a reference parameter responsive to a physiological signal input. A physiological measurement output is a physiological parameter derived from the physiological signal input during a favorable condition and an estimate of the physiological parameter according to the reference parameter during an unfavorable condition.
Abstract:
A method and an apparatus to analyze two measured signals that are modeled as containing desired and undesired portions such as noise, FM and AM modulation. Coefficients relate the two signals according to a model defined in accordance with the present invention. In one embodiment, a transformation is used to evaluate a ratio of the two measured signals in order to find appropriate coefficients. The measured signals are then fed into a signal scrubber which uses the coefficients to remove the unwanted portions. The signal scrubbing is performed in either the time domain or in the frequency domain. The method and apparatus are particularly advantageous to blood oximetry and pulserate measurements. In another embodiment, an estimate of the pulserate is obtained by applying a set of rules to a spectral transform of the scrubbed signal. In another embodiment, an estimate of the pulserate is obtained by transforming the scrubbed signal from a first spectral domain into a second spectral domain. The pulserate is found by identifying the largest spectral peak in the second spectral domain.
Abstract:
Embodiments of the present disclosure provide a hypersaturation index for measuring a patient's absorption of oxygen in the blood stream after a patient has reached 100% oxygen saturation. This hypersaturation index provides an indication of the partial pressure of oxygen of a patient. In an embodiment of the present invention, a hypersaturation index is calculated based on the absorption ratio of two different wavelengths of energy at a measuring site. In an embodiment of the invention, a maximum hypersaturation index threshold is determined such that an alarm is triggered when the hypersaturation index reaches or exceeds the threshold. In another embodiment, an alarm is triggered when the hypersaturation index reaches or falls below its starting point when it was first calculated.
Abstract:
A system for generating and detecting transient vapor nanobubbles in a fluid from a patient can include a micro-fluidic device to receive a flow of the fluid from the patient, a laser pulse source to provide a laser pulse to the flow of the fluid from a first side of the micro-fluidic device, a probe light source to provide a probe light to the flow from the first side of the micro-fluidic device, and a photodetector located at a second side of the micro-fluidic device opposite the first side. The photodetector can detect scattered, reflected, and/or deflected probe light and output a nanobubble signal including characteristics of optical scattering, reflecting, and/or deflecting by the transient vapor nanobubble.
Abstract:
A robust alarm system has an alarm controller adapted to input an alarm trigger and to generate at least one alarm drive signal in response. Alarm subsystems input the alarm drive signal and activate one or more of multiple alarms accordingly. A subsystem function signal provides feedback to the alarm controller as to alarm subsystem integrity. A malfunction indicator is output from the alarm controller in response to a failure within the alarm subsystems.
Abstract:
Embodiments of the present disclosure provide a hypersaturation index for measuring a patient's absorption of oxygen in the blood stream after a patient has reached 100% oxygen saturation. This hypersaturation index provides an indication of the partial pressure of oxygen of a patient. In an embodiment of the present invention, a hypersaturation index is calculated based on the absorption ratio of two different wavelengths of energy at a measuring site. In an embodiment of the invention, a maximum hypersaturation index threshold is determined such that an alarm is triggered when the hypersaturation index reaches or exceeds the threshold. In another embodiment, an alarm is triggered when the hypersaturation index reaches or falls below its starting point when it was first calculated.
Abstract:
A method and an apparatus for separating a composite signal into a plurality of signals is described. A signal processor receives a composite signal and separates a composite signal into separate output signals. Feedback from one or more of the output signals is provided to a configuration module that configures the signal processor to improve a quality of the output signals. In one embodiment, calibration data from multiple calibration data sets is used to configure the demodulation of the composite signal into separate output signals.