Abstract:
A method for data transfer includes receiving in a data transfer operation data to be written by a peripheral device to a specified virtual address in a random access memory (RAM) of a host computer. Upon receiving the data, it is detected that a page that contains the specified virtual address is marked as not present in a page table of the host computer. The peripheral device receives a notification that the page is not present and an estimate of a length of time that will be required to make the page available and selects a mode for handling of the data transfer operation depending upon the estimate.
Abstract:
A method for interaction by a central processing unit (CPU) and peripheral devices in a computer includes allocating, in a memory, a work queue for controlling a first peripheral device of the computer. The CPU prepares a work request for insertion in the allocated work queue, the work request specifying an operation for execution by the first peripheral device. A second peripheral device of the computer submits an instruction to the first peripheral device to execute the work request that was prepared by the CPU and thereby to perform the operation specified by the work request.
Abstract:
In a data network congestion control in a virtualized environment is enforced in packet flows to and from virtual machines in a host. A hypervisor and network interface hardware in the host are trusted components. Enforcement comprises estimating congestion states in the data network attributable to respective packet flows, recognizing a new packet that belongs to one of the data packet flows, and using one or more of the trusted components and to make a determination based on the congestion states that the new packet belongs to a congestion-producing packet flow. A congestion-control policy is applied by one or more of the trusted components to the new packet responsively to the determination.
Abstract:
A method for memory access includes maintaining in a host memory, under control of a host operating system running on a central processing unit (CPU), respective address translation tables for multiple processes executed by the CPU. Upon receiving, in a peripheral device, a work item that is associated with a given process, having a respective address translation table in the host memory, and specifies a virtual memory address, the peripheral device translates the virtual memory address into a physical memory address by accessing the respective address translation table of the given process in the host memory. The work item is executed in the peripheral device by accessing data at the physical memory address in the host memory.