Abstract:
In a method for generating a physical layer (PHY) data unit for transmission via a communication channel, information bits to be included in the PHY data unit are encoded using a forward error correction (FEC) encoder. Also, the information bits are encoded according to a block coding scheme, where m copies of each bit are included in the information bits, and one or more bits in the m copies of each bit are flipped. The information bits are mapped to a plurality of constellation symbols, and a plurality of orthogonal frequency division multiplexing (OFDM) symbols are generated to include the plurality of constellation symbols. The PHY data unit is generated to include the plurality of OFDM symbols.
Abstract:
In a method of calibrating a wireless communication device, a first sounding packet is transmitted from the wireless communication device to a calibration station. A first channel descriptor is generated based on the first sounding packet. A second sounding packet is transmitted from the calibration station to the wireless communication device. A second channel descriptor is generated based on the second sounding packet. The first channel descriptor and the second channel descriptor are obtained at a controller. Calibration coefficients indicative of one or both of phase imbalance and amplitude imbalance between a receive radio frequency (RF) chain and a transmit RF chain at the wireless communication device are generated based on the first and the second channel descriptors. The calibration coefficients are sent from the controller to the wireless communication device.
Abstract:
A method for transmitting a data packet includes prepending to the digital contents of the data packet a preamble including a first preamble field having a plurality of repetitions of a sequence. The method also includes determining according to a specified communication protocol a first transmission power level for the data packet and determining according to the specified communication protocol and the first preamble field an unadjusted transmission power level for the first preamble field. The method further includes determining the presence of one or more power-boost characteristics of the data packet or of an intended receiving client, transmitting the first preamble field at a first adjusted transmission power level if one or more power-boost characteristics are determined to be present, and transmitting a remainder of the data packet at the first transmission power level for the data packet.
Abstract:
A method for processing a preamble of a data unit transmitted via a communication channel includes receiving a signal via a plurality of antennas, applying a plurality of distinct steering vectors to the received signal to generate a plurality of respective outputs, and using the plurality of outputs to perform at least one of carrier sensing and symbol timing synchronization associated with the preamble.
Abstract:
In a method for generating a physical layer (PHY) data unit for transmission via a communication channel, information bits to be included in the PHY data unit are encoded using a forward error correction (FEC) encoder. Also, the information bits are encoded according to a block coding scheme, where m copies of each bit are included in the information bits, and one or more bits in the m copies of each bit are flipped. The information bits are mapped to a plurality of constellation symbols, and a plurality of orthogonal frequency division multiplexing (OFDM) symbols are generated to include the plurality of constellation symbols. The PHY data unit is generated to include the plurality of OFDM symbols.
Abstract:
In a communication network, a first communication device obtains respective channel estimate matrices of respective communication channels between i) the first communication device and ii) respective second communication devices. The first communication device generates respective steering matrices for use in communicating with the respective second communication devices, including generating each steering matrix to project to a null-space of a space spanned by channel estimate matrices corresponding to others of the second communication devices. The first communication device utilizes the respective steering matrices to simultaneously transmit respective signals to the respective second communication devices.
Abstract:
A communication device generates a physical layer (PHY) data unit that includes a PHY preamble and one or more PHY midambles. The communication generates the PHY preamble of the PHY data unit to include i) a signal field having a subfield that indicates that the PHY data unit includes one or more PHY midambles, ii) a short training field (STF) for automatic gain control (AGC) training and synchronization at a receiver, and iii) one or more long training fields (LTFs) for determining a channel estimate at the receiver. The communication generates a data payload of the PHY data unit having i) a set of orthogonal frequency division multiplexing (OFDM) symbols, and ii) one or more PHY midambles. Each of the one or more PHY midambles includes one or more LTFs for determining an updated channel estimate. The communication device transmits the PHY data unit via a wireless communication channel.
Abstract:
A first communication device generates a physical layer (PHY) protocol data unit having a beginning portion and an ending portion, where the beginning portion includes a PHY protocol header having a PHY protocol preamble, and the ending portion includes a reference signal. The PHY protocol data unit prompts a second communication device to record a first time corresponding to reception of the reference signal by the second communication device. The first communication device transmits the PHY protocol data unit, records a second time corresponding to transmission of the reference signal by the first communication device. The first communication device calculates a time of flight of the PHY protocol data unit using the second time, and/or transmits the second time to the second communication device, a third communication device, or both, to facilitate calculation of the time of flight of the PHY protocol data unit using the second time.
Abstract:
Systems, devices, and techniques relating to multi-symbol channel estimation are described. A described technique includes receiving a signal comprising first and second training symbols, and one or more data symbols; determining first and second channel estimates for subcarriers respectively based on the first and second training symbols; determining a dynamic timing advance estimate based on the first training symbol to adjust a sampling time for a remaining portion of the signal; determining one or more phase differences between the first and second training symbols for the subcarriers respectively based on angular versions of the first and second channel estimates; rotating the first channel estimates based on the dynamic timing advance estimate and the one or more phase differences; producing combined channel estimates based on the second channel estimates and the rotated first channel estimates; and processing the one or more data symbols based on the combined channel estimates.
Abstract:
In accordance with embodiments of the present disclosure there is provided a method for carrier sensing. The method includes receiving, at a wireless receiver, an input signal, and generating, based on a sampling period, a plurality of data samples from the input signal. The method further includes periodically combining a first data sample from the plurality of data samples with a second data sample that is one or more sampling periods before the first data sample to generate a combined data sample. The method further includes generating an auto-correlated output for carrier sensing based on the combined data sample. The auto-correlated output is provided to generate an estimate of phase difference between the first sample and the second sample for the periodic combining.