Abstract:
An access point including a first processor and a network device. The network device is separate from the first processor. The first processor transitions between first and second power modes. The network device includes a second processor and first and second interfaces. The second processor, while the first processor is in the second power mode, (i) causes the second interface to transmit a beacon, or (ii) receives a probe request from a client device. The second interface, while the first processor is in the second power mode, (i) transmits a probe response over a wireless local area network to the client device based on the beacon or the probe request, and (ii) receives an authentication frame from the client device based on the probe response. The second processor, in response to the authentication frame, signals the first processor via the first interface to transition to the first power mode.
Abstract:
In a method of calibrating a wireless communication device, a first sounding packet is transmitted from the wireless communication device to a calibration station. A first channel descriptor is generated based on the first sounding packet. A second sounding packet is transmitted from the calibration station to the wireless communication device. A second channel descriptor is generated based on the second sounding packet. The first channel descriptor and the second channel descriptor are obtained at a controller. Calibration coefficients indicative of one or both of phase imbalance and amplitude imbalance between a receive radio frequency (RF) chain and a transmit RF chain at the wireless communication device are generated based on the first and the second channel descriptors. The calibration coefficients are sent from the controller to the wireless communication device.
Abstract:
A wireless network device includes a wireless network port, first and second virtual machines, and a processor. While executing the first virtual machine, the processor stores, in a third queue, data to be processed by the first virtual machine and the first virtual machine maintains, in a first queue, a copy of the data stored in the third queue. While executing the second virtual machine, the processor stores, in the third queue, data to be processed by the second virtual machine and the second virtual machine maintains, in a second queue, a copy of the data stored in the third queue. Upon resuming execution, the first virtual machine transfers, to the third queue, the copy of the data maintained in the first queue. Upon resuming execution, the second virtual machine transfers, to the third queue, the copy of the data maintained in the second queue.
Abstract:
A device including a first transceiver configured to transmit and receive, using a first antenna, according to a first communication protocol, a second transceiver configured to transmit and receive, using a second antenna, according to the first communication protocol, and a third transceiver configured to transmit and receive, using the second antenna, according to a second communication protocol. A controller is configured to select between a first mode where the first, second, and third transceivers are configured to respectively communicate using the first and second antennas at a same time, and a second mode where the first, second, and third transceivers are configured to respectively communicate using the first and second antennas at different times. In the first mode and the second mode, the controller is further configured to selectively allow the second transceiver to transmit and receive using the second antenna at a same time as the third transceiver.
Abstract:
A system including a diversity module and an antenna selection module. The diversity module is configured to measure (i) a first signal-to-noise ratio and a first error rate associated with a first antenna, and (ii) a second signal-to-noise ratio and a second error rate associated with a second antenna. The antenna selection module is configured to select the first antenna or the second antenna by comparing (i) the first signal-to-noise ratio to the second signal-to-noise ratio, and (ii) the first error rate to the second error rate.
Abstract:
A system including a diversity module and an antenna selection module. The diversity module is configured to measure i) a first signal-to-noise ratio and a first error rate for a first signal received via a first antenna, and ii) a second signal-to-noise ratio and a second error rate for a second signal received via a second antenna. The antenna selection is module configured to select the first antenna or the second antenna by comparing i) the first signal-to-noise ratio to the second signal-to-noise ratio, and ii) the first error rate to the second error rate.
Abstract:
A first sounding packet is transmitted from the wireless communication device to a calibration station. A first channel descriptor is generated based on the first sounding packet. A second sounding packet is transmitted from the calibration station to the wireless communication device. A second channel descriptor is generated based on the second sounding packet. The first channel descriptor and the second channel descriptor are obtained at a processor device. Calibration coefficients indicative of one or both of phase imbalance and amplitude imbalance between a receive radio frequency (RF) chain and a transmit RF chain at the wireless communication device are generated based on the first and the second channel descriptors. The calibration coefficients are sent from the processor device to the wireless communication device.
Abstract:
Selection between first and second communication channels of differing bandwidths for communication between communication devices may be chosen by a method, an apparatus, or a computer-readable medium wherein the first channel is employed as a communication channel, a determination is made whether a criterion associated with the communication channel is met, and, if the criterion associated with the communication channel is met, an evaluation of the second channel is performed and one of the first and second channels is chosen to subsequently employ as the communication channel based on the evaluation of the second channel.
Abstract:
A radio frequency transmitting system which includes first and second amplifiers, a power detector, and a calibration module. The first amplifier amplifies an input signal to generate an amplified signal in accordance with a programmable gain. The second amplifier transmits an output signal based on the amplified signal. The output signal is transmitted at a particular power by the second amplifier. The power detector measures the particular power at which the output signal is transmitted by the second amplifier. The calibration module adjusts the programmable gain of the first amplifier by a calibration offset so that the particular power measurement matches a predetermined power. The calibration module includes offset generation modules that each generate a respective calibration offset candidate based on the particular power measurement. The calibration module also includes a selection module that selects, based on the predetermined power, one of the calibration offset candidates as the calibration offset.