摘要:
Stress enhanced transistor devices and methods of fabricating the same are provided. In one embodiment, a transistor device comprises: a gate conductor disposed above a semiconductor substrate between a pair of dielectric spacers, wherein the semiconductor substrate comprises a channel region underneath the gate conductor and recessed regions on opposite sides of the channel region, wherein the recessed regions undercut the dielectric spacers to form undercut areas of the channel region; and epitaxial source and drain regions disposed in the recessed regions of the semiconductor substrate and extending laterally underneath the dielectric spacers into the undercut areas of the channel region.
摘要:
A complimentary metal oxide semiconductor and a method of manufacturing the same using a self-aligning process to form one of the stacks of device. The method includes depositing an oxide layer over a portion of a metal layer over an nFET region of a CMOS structure and etching the metal layer over a pFET region of the CMOS structure. The method further includes etching at the oxide layer over the nFET region and forming gate structures over the nFET region and pFET region.
摘要:
A field effect structure and a method for fabricating the field effect structure include a germanium containing channel interposed between a plurality of source and drain regions. The germanium containing channel is coplanar with the plurality of source and drain regions, and the germanium containing channel includes a germanium containing material having a germanium content greater than the germanium content of the plurality of source and drain regions.
摘要:
An improved SRAM and fabrication method are disclosed. The method comprises use of a nitride layer to encapsulate PFETs and logic NFETs, protecting the gates of those devices from oxygen exposure. NFETs that are used in the SRAM cells are exposed to oxygen during the anneal process, which alters the effective work function of the gate metal, such that the threshold voltage is increased, without the need for increasing the dopant concentration, which can adversely affect issues such as mismatch due to random dopant fluctuation, GIDL and junction leakage.
摘要:
A method for making a semiconductor device structure, includes: providing a substrate; forming on the substrate: a first layer below and second layers on a gate with spacers, source and drain regions adjacent to the gate, silicides on the gate and source and drain regions; disposing a stress layer over the structure resulting from the forming step; disposing an insulating layer over the stress layer; removing portions of the insulating layer to expose a top surface of the stress layer; removing the top surface and other portions of the stress layer and portions of the spacers to form a trench, and then disposing a suitable stress material into the trench.
摘要:
A semiconductor device structure is provided which includes a first field effect transistor (“FET”) having a first channel region, a first source region, a first drain region and a first gate conductor overlying the first channel region. A second FET is included which has a second channel region, a second source region, a second drain region and a second gate conductor overlying the second channel region. The first and second gate conductors are portions of a single elongated conductive member extending over both the first and second channel regions. A first stressed film overlies the first FET, the first stressed film applying a stress having a first value to the first channel region. A second stressed film overlies the second FET, the second stressed film applying a stress having a second value to the second channel region. The second value is substantially different from the first value. In addition, the first and second stressed films abut each other at a common boundary and present a substantially co-planar major surface at the common boundary.
摘要:
An improved SRAM and fabrication method are disclosed. The method comprises use of a nitride layer to encapsulate PFETs and logic NFETs, protecting the gates of those devices from oxygen exposure. NFETs that are used in the SRAM cells are exposed to oxygen during the anneal process, which alters the effective work function of the gate metal, such that the threshold voltage is increased, without the need for increasing the dopant concentration, which can adversely affect issues such as mismatch due to random dopant fluctuation, GIDL and junction leakage.
摘要:
The present invention provides a semiconducting device including a substrate including a semiconducting surface having an n-type device in a first device region and a p-type device in a second device region, the n-type device including a first gate structure present overlying a portion of the semiconducting surface in the first device region including a first work function metal semiconductor alloy in the semiconducting surface adjacent to the portion of the semiconducting surface underlying the gate structure, and a first type strain inducing layer present overlying the first device region; and a p-type device including a second gate structure present overlying a portion of the semiconducting surface in the second device region including a second work function metal semiconductor alloy in the semiconducting surface adjacent to the portion of the semiconducting surface underlying the gate structure, and a second type strain inducing layer present overlying the second device region.
摘要:
The present invention relates to a heterojunction tunneling effect transistor (TFET), which comprises spaced apart source and drain regions with a channel region located therebetween and a gate stack located over the channel region. The drain region comprises a first semiconductor material and is doped with a first dopant species of a first conductivity type. The source region comprises a second, different semiconductor material and is doped with a second dopant species of a second, different conductivity type. The gate stack comprises at least a gate dielectric and a gate conductor. When the heterojunction TFET is an n-channel TFET, the drain region comprises n-doped silicon, while the source region comprises p-doped silicon germanium.
摘要:
A semiconductor device structure is provided which includes a first field effect transistor (“FET”) having a first channel region, a first source region, a first drain region and a first gate conductor overlying the first channel region. A second FET is included which has a second channel region, a second source region, a second drain region and a second gate conductor overlying the second channel region. The first and second gate conductors can be portions of a single elongated conductive member extending over both the first and second channel regions. A first stressed film may overlie the first FET and the first stressed film may apply a stress having a first value to the first channel region. A second stressed film may overlie the second FET and the second stressed film may apply a stress having a second value to the second channel region. The second value is substantially different from the first value. The first and second stressed films can abut each other at a common boundary and present a substantially co-planar major surface at the common boundary.