Abstract:
Method and systems for controlling a hybrid network having software-defined network (SDN) switches and legacy switches include initializing a hybrid network topology by retrieving information on a physical and virtual infrastructure of the hybrid network; generating a path between two nodes on the hybrid network based on the physical and virtual infrastructure of the hybrid network; generating a virtual local area network by issuing remote procedure call instructions to legacy switches in accordance with a network configuration request; and generating an SDN network slice by issuing SDN commands to SDN switches in accordance with the network configuration request.
Abstract:
The invention efficiently provides user code information for kernel level tracing approaches. It applies an advanced variation of stack walking called multi-mode stack walking to the entire system level and generates the unified trace where the user code and kernel events are integrated. The invention uses runtime stack information and internal kernel data structures. Therefore, source code for user level code and libraries are not required for inspection. The invention introduces the mechanism to narrow down the monitoring focus to specific application software and improve monitoring performance.
Abstract:
Methods and systems for vehicle fault detection include collecting operational data from sensors in a vehicle. The sensors are associated with vehicle sub-systems. The operational data is processed with a neural network to generate a fault score, which represents a similarity to fault state training scenarios, and an anomaly score, which represents a dissimilarity to normal state training scenarios. The fault score is determined to be above a fault score threshold and the anomaly score is determined to be above an anomaly score threshold to detect a fault. A corrective action is performed responsive the fault, based on a sub-system associated with the fault.
Abstract:
A computer-implemented method for efficient and scalable enclave protection for machine learning (ML) programs includes tailoring at least one ML program to generate at least one tailored ML program for execution within at least one enclave, and executing the at least one tailored ML program within the at least one enclave.
Abstract:
A computer-implemented method for securing software installation through deep graph learning includes extracting a new software installation graph (SIG) corresponding to a new software installation based on installation data associated with the new software installation, using at least two node embedding models to generate a first vector representation by embedding the nodes of the new SIG and inferring any embeddings for out-of-vocabulary (OOV) words corresponding to unseen pathnames, utilizing a deep graph autoencoder to reconstruct nodes of the new SIG from latent vector representations encoded by the graph LSTM, wherein reconstruction losses resulting from a difference of a second vector representation generated by the deep graph autoencoder and the first vector representation represent anomaly scores for each node, and performing anomaly detection by comparing an overall anomaly score of the anomaly scores to a threshold of normal software installation.
Abstract:
Systems and methods for a provenance based threat detection tool that builds a provenance graph including a plurality of paths using a processor device from provenance data obtained from one or more computer systems and/or networks; samples the provenance graph to form a plurality of linear sample paths, and calculates a regularity score for each of the plurality of linear sample paths using a processor device; selects a subset of linear sample paths from the plurality of linear sample paths based on the regularity score, and embeds each of the subset of linear sample paths by converting each of the subset of linear sample paths into a numerical vector using a processor device; detects anomalies in the embedded paths to identify malicious process activities, and terminates a process related to the embedded path having the identified malicious process activities.
Abstract:
Systems and methods for implementing a system architecture to support a trusted execution environment (TEE) with computational acceleration are provided. The method includes establishing a first trusted channel between a user application stored on an enclave and a graphics processing unit (GPU) driver loaded on a hypervisor. Establishing the first trusted channel includes leveraging page permissions in an extended page table (EPT) to isolate the first trusted channel between the enclave and the GPU driver in a physical memory of an operating system (OS). The method further includes establishing a second trusted channel between the GPU driver and a GPU device. The method also includes launching a unified TEE that includes the enclave and the hypervisor with execution of application code of the user application.
Abstract:
A method for implementing confidential machine learning with program compartmentalization includes implementing a development stage to design an ML program, including annotating source code of the ML program to generate an ML program annotation, performing program analysis based on the development stage, including compiling the source code of the ML program based on the ML program annotation, inserting binary code based on the program analysis, including inserting run-time code into a confidential part of the ML program and a non-confidential part of the ML program, and generating an ML model by executing the ML program with the inserted binary code to protect the confidentiality of the ML model and the ML program from attack.
Abstract:
The invention is directed to a computer implemented method and a system that implements an application performance profiler with hardware performance event information. The profiler provides dynamic tracing of application programs, and offers fine-grained hardware performance event profiling at function levels. To control the perturbation on target applications, the profiler also includes a control mechanism to constraint the function profiling overhead within a budget configured by users.
Abstract:
A computer-implemented method for performing privilege flow analysis is presented. The computer-implemented method includes monitoring at least one program operating system (OS) event handled by a program, generating a privilege flow graph, determining an inferred program behavior context, and generating, based on a combination of the privilege flow graph and the inferred program behavior context, an inferred behavior context-aware privilege flow graph to distinguish different roles of processes and/or threads within the program.