摘要:
A pressure sensitive conductive sheet is provided by having a plurality of ferromagnetic conductive particles dispersed in a transparent elastic member joined together and linearly aligned with the thickness direction thereby forming a linear aggregate and then having the linear aggregate segmented into a plurality conductive elements, held linearly aligned with the thickness direction, with predetermined gaps formed therebetween. Further, a touch panel having good transparency and allowing stabilized operation is provided by interposing the pressure sensitive conductive sheet between an upper conductive layer on the lower face of an upper substrate and a lower conductive layer on the upper face of a lower substrate.
摘要:
A touch panel has an upper substrate, a lower substrate, an elastic layer, plural conducting wires, and a gel layer. An upper conductive layer is formed at a lower surface of the upper substrate, a lower conductive layer that faces the upper conductive layer with a gap in between is formed at a top surface of the lower substrate, and the elastic layer is formed at a top surface of the lower conductive layer. The conductive wires are partially buried in the elastic layer and are disposed in a manner vertically oriented with a gap from the upper conductive layer. The gel layer is formed between the upper conductive layer and the elastic layer. With this construction, the touch panel is obtainable that suffers less wrong operation and allows reliable operation.
摘要:
A touch panel includes a light-transmittable upper substrate, a light-transmittable upper resistor layer on a lower surface of the upper substrate, a light-transmittable lower substrate, a light-transmittable lower resistor layer on an upper surface of the lower substrate, an adhesive layer on an upper surface of the upper substrate, and a light-transmittable plate on the adhesive layer. The upper substrate is made of material having oxygen and nitrogen removed therefrom. The lower resistor layer faces the upper resistor layer by a distance. The light-transmittable plate disables oxygen and nitrogen to pass through the plate substantively. Even being used in high temperatures, this touch panel does not produce an air bubble in the adhesive layer, hence allowing a user to clearly view a display device through the touch panel.
摘要:
A touch panel includes a first substrate, a second substrate, a wiring substrate provided with a plurality of wiring patterns formed thereon, and an anisotropic conductive adhesive layer. The first substrate has a first conductive layer and first electrodes extending from two opposite sides of the first conductive layer. The second substrate has a second conductive layer confronting the first surface with a space, and second electrodes extending from two opposite sides of the second conductive layer. The anisotropic conductive adhesive layer connects a terminal portion of the wiring patterns to at least one of the first electrodes and the second electrodes. The wiring substrate has a slit or an aperture between the wiring patterns at one end thereof. The touch panel of this structure is easy to produce, and provides reliable operation and electrical connection and separation.
摘要:
A touch panel uses a plurality of spacers shaped in the form of a letter L. The L-shape spacers can be manufactured by densely patterning the shapes of L in a certain specific orientation on a spacer sheet. Thus, a large number of such spacers can be made available out of a unit spacer sheet of a certain specific size, at a lowered rate of loss in the material utilization.
摘要:
A light-transmitting touch panel and a detection device. The light-transmitting touch panel includes a first substrate where a conductive layer is formed on its back face, and a second substrate where a conductive layer facing the above conductive layer is formed on its surface with a predetermined space in between. A surface conductive layer is formed in a predetermined area on the front face of the first substrate. The detection device detects a proximity of an operator's finger to or a touch on this touch panel. The proximity of a conductive object such as a finger is detectable from a certain distance, and the touched position is also detectable with high accuracy. In addition, sensing of the proximity and sensing of the touched position are clearly distinguishable.
摘要:
A steel wire rods and bars for machine structural use having, in the as-hot-rolled state, the same cold workability as a conventional steel wire rods and bars subjected to softening annealing after hot rolling, and a production method thereof are provided. This hot-rolled wire rods and bars usable for machine structural use without annealing comprises, in terms of mass %, C: 0.1 to 0.5%, Si: 0.01 to 0.5%, Mn: 0.3 to 1.5% and the balance of Fe and unavoidable impurities and if desired, comprises strengthening elements, wherein the microstructure of steel is composed of ferrite and pearlite, the ferrite grain size is No. 11 or more as defined in JIS G 0552, a granular carbide having an equivalent-circle diameter of 2 μm or less and an aspect ratio of 3 or less is contained in an area ratio of 5 to 40%, and the steel wire rods and bars has a tensile strength TS (MPa)≦573×Ceq+257 and a reduction of area RA (%)≧−23×Ceq+75 (wherein Ceq=C+Si/7+Mn/5+Cr/9+Mo/2).
摘要翻译:提供了一种用于机加工结构的钢线材和棒材,其在热轧状态下具有与在热轧后进行软化退火的常规钢丝棒和棒相同的冷加工性及其制造方法。 这种用于机械结构使用而不退火的热轧线材和棒材以质量%计含有C:0.1〜0.5%,Si:0.01〜0.5%,Mn:0.3〜1.5%,余量由Fe和不可避免 杂质,如果需要,包括强化元素,其中钢的微结构由铁素体和珠光体组成,铁素体晶粒尺寸为JIS G0552中定义的11号以上,当量圆直径为2μm的颗粒状碳化物 面积比为5〜40%,纵横比为3以下,钢线棒和拉伸强度TS(MPa)<= 573×Ceq + 257,面积RA(% )= 23×Ceq + 75(Ceq = C + Si / 7 + Mn / 5 + Cr / 9 + Mo / 2)。
摘要:
All of a transparent electrode layer 2, a light-emitting layer 3, a dielectric layer 4, a back-surface electrode 5, collecting electrodes 5a, 5b, and an insulating coat layer 6 are laminated with predetermined patterns by screen printing on a insulating transparent film 1. Conductive paste used for forming transparent electrode layer 2 comprises conductive powder of indium oxide which contains needle-like powder (A) and fine-grain powder (B) at a blending ratio of (A):(B)=100:0 to 20:80. A binder resin (D), being a photo-hardening or thermal-hardening resin, is mixed with the conductive powder (C) at a blending ratio of (C):(D)=45:55 to 95:5, thereby obtaining an excellent EL lighting element. In an illuminated switch unit, a switch operating projection 14 is provided on the reverse surface of an EL lighting element 15 and this EL lighting element 15 is fixed above a membrane switch 13 via a spacer 16, thereby removing any obstacles interrupting or intercepting illumination light emitted from EL lighting element 15.
摘要:
All of a transparent electrode layer 2, a light-emitting layer 3, a dielectric layer 4, a back-surface electrode 5, collecting electrodes 5a, 5b, and an insulating coat layer 6 are laminated with predetermined patterns by screen printing on an insulating transparent film 1. Conductive paste used for forming transparent electrode layer 2 comprises conductive powder of indium oxide which contains needle-like powder (A) and fine-gain powder (B) at a blending ratio of (A):(B)=100:0 to 20:80. A binder resin (D), being a photo-hardening or thermal-hardening resin, is mixed with the conductive powder (C) at a blending ratio of (C):(D)=45:55 to 95:5, thereby obtaining an excellent EL lighting element.
摘要:
On an upper surface of an insulating transparent film, a transparent electrode layer, a phosphor layer, a dielectric layer, a back-surface electrode, collecting electrode layers, and an insulating coat layer are successively accumulated in predetermined patterns by repeating screen printing operations. Meanwhile, a light-permeable reflection layer containing pearly pigment is formed on a lower surface of the insulating transparent film in a predetermined pattern by a printing operation. With this arrangement, it becomes possible to eliminate the color difference of the light-emitting surface of the EL lighting element between its turned-on and turned-off conditions.