Abstract:
An information recording method is disclosed, wherein different optimum recording power levels are determined for different mark lengths. At a first trial writing process, first predetermined test data, from which a specific pattern, e.g., 3T is removed, are written with recording power levels being shifted, and a first optimum recording power level is determined based on a reproduction signal of the recorded first test data. Then, at a second trial writing process, second predetermined test data that are constituted by 3T marks are written with the recording power level for the 3T marks being shifted, and with the recording power level for marks other than the 3T marks being set at the first optimum recording level, and a second optimum recording power level for the 3T marks is determined based on a reproduction signal of the recorded second test data.
Abstract:
An optical information recording method and apparatus which records information on a recording medium by irradiating the recording medium with an irradiation light of a recording power to form a recorded-mark on the recording medium such that reflection coefficient from an area of the recorded-mark is different than a reflection coefficient from an area of the recording medium where the recorded-mark is not formed by a changing power of the irradiation light. Information is recorded by modulating the irradiation light according to the information for recording, forming a recorded-mark on the recording medium by changing the power of the irradiation light between a recording power and a non-recording power, receiving reflection light of the irradiation light reflected by the recording medium and producing a corresponding light signal, determining a state of the recorded-mark based upon the light signal produced during a predetermined period of time immediately after the irradiation light changes from the recording power to the non-recording power, and controlling the recording power of the irradiation light according to the state of the recorded-mark.
Abstract:
A wobble-signal detecting device detects a wobble signal based on a signal which is the difference between outputs of two divisions of a light receiving device. These two divisions are located on both sides of a line parallel to a target portion of an information recording track. This light receiving device receives light reflected by a recording medium as a result of an optical beam being incident on the recording medium. This recording medium contains the information recording track, which wobbles at a predetermined frequency, and has pre-pits formed at predetermined intervals in areas between the information recording tracks. This light receiving device comprises a pre-pit controlling portion which removes or reduces the pre-pit components of the signal which is the difference between the outputs of the two divisions of the light receiving device, and outputs a pre-pit-component-controlled signal; and a wobble-frequency-component extracting portion which extracts wobble-frequency components from the pre-pit-component-controlled signal and outputs a wobble-frequency-component signal, the wobble signal being obtained based on the wobble-frequency-component signal.
Abstract:
A head driving device drives a liquid ejection head. The liquid ejection head includes a plurality of nozzles and a plurality of pressure generating devices provided respectively corresponding to the nozzles. The head driving device includes a driving-waveform correcting unit configured to correct driving waveform data that defines ejection characteristics of liquid to be ejected from the nozzle based on interference patterns expressing variations in the ejection characteristics caused by an interference occurring in the nozzle.
Abstract:
A pixel clock generating device includes a time interval detection unit detecting a time interval between a first signal and a second signal in each of cyclically repeating N (≧2) time periods; a comparing unit cyclically selecting a target value from N target values corresponding to the N time periods and outputting an error indicating a difference between the detected time interval and the selected target value for each of the N time periods; a frequency calculation unit correcting a frequency of the pixel clock signal based on the error and cyclically generating a frequency specification signal indicating the corrected frequency for each of the N time periods; a high-frequency clock generating unit generating a high-frequency clock signal; and a pixel clock generating unit generating a pixel clock signal based on the frequency specification signal and the high-frequency clock signal.
Abstract:
An image forming apparatus includes a color registration error amount calculation unit that calculates a color registration error amount from a first test pattern; a correction information obtaining unit that obtains a correction information for correcting an image on a back surface based on previously obtained contraction information of a printing paper after printing an image on a front surface when printing on both surfaces; and an image data correction unit that corrects the image on the back surface based on the color registration error amount calculated by the color registration error amount and the correction information obtained by the correction information obtaining unit.
Abstract:
An image forming apparatus includes an intermediate transfer body; a generating unit generating test pattern data; a storage unit storing a color displacement amount; a correcting unit correcting the test pattern data and image data based on the color displacement amount currently stored in the storage unit; a forming unit forming a test pattern based on the test pattern data corrected by the correcting unit on the intermediate transfer body at predetermined intervals, and forming an image based on the image data corrected by the correcting unit on the intermediate transfer body; a detecting unit detecting the test pattern formed on the intermediate transfer body; an updating unit determining an amount of change of the color displacement amount from a result of detection by the detecting unit, and updating the color displacement amount stored in the storage unit by using the amount of change of the color displacement amount.
Abstract:
An image forming apparatus includes an intermediate transfer body; a generating unit generating test pattern data; a storage unit storing a color displacement amount; a correcting unit correcting the test pattern data and image data based on the color displacement amount currently stored in the storage unit; a forming unit forming a test pattern based on the test pattern data corrected by the correcting unit on the intermediate transfer body at predetermined intervals, and forming an image based on the image data corrected by the correcting unit on the intermediate transfer body; a detecting unit detecting the test pattern formed on the intermediate transfer body; an updating unit determining an amount of change of the color displacement amount from a result of detection by the detecting unit, and updating the color displacement amount stored in the storage unit by using the amount of change of the color displacement amount.
Abstract:
A first trial write process obtains an optimum recording power of a test pattern even with respect to data having different rules for the recording waveforms corresponding n type data length sets, and a second trial write process using this optimum recording power obtains optimum pulse width or optimum pulse edge position separately for each data length set. Based on the optimum recording power and optimum recording waveform obtained by these trial write processes, recording operation is performed so as to form all the data lengths with satisfactory accuracy, thereby making it possible to obtain a proper reproduced signal.
Abstract:
A comparator compares a time interval between a first synchronization signal and a second synchronization signal with a target value, and outputs an error therebetween. A frequency calculator calculates a set value of a pixel clock frequency based on the error output from the comparator, and outputs a frequency specification signal for specifying a pixel clock frequency according to the calculated set value. A frequency divider divides a high frequency clock generated by a high frequency clock generator by a frequency division ratio based on the frequency specification signal output from the frequency calculator, and generates the pixel clock.