摘要:
Method for producing highly pure tris-ortho metalled organoiridium compounds The present invention describes a process for preparing highly pure tris-ortho-metalled organoiridium compounds and pure organometallic compounds of this type, especially compounds of the d8 metals, which may find use as coloring components in the near future as active components (=functional materials) in a series of different types of application which can be classed within the electronics industry in its broadest sense.
摘要:
The present invention relates to conjugated polymers which contain specific fused arylamine structural units. The inventive materials have improved efficiency at a high illumination density and are therefore suitable in particular for use in what are known as passive matrix displays.
摘要:
The invention relates to conjugated polymers containing novel structural units according to formula (1). The inventive materials are characterized by increased efficiency and a longer service life when used in polymer organic light emitting diodes.
摘要:
The present invention relates to solutions and/or dispersions of organic semiconductors in a solvent mixture of at least two different organic solvents, characterized in that A. Each of the solvents on its own has a boiling point of below 200° C. and a melting point of 15° C. or less, B. at least one of the solvents has a boiling point in the range from greater than 140 to less than 200° C., C. the solvents used have no benzylic CH2 or CH groups, D. the solvents used are not benzene derivatives containing tert-butyl substituents or more than two methyl substituents, and their use in printing processes for producing layers of organic semiconductors, especially for the electronics industry.
摘要:
The present invention relates to novel conjugated polymers comprising spirobifluorene units and their use in optoelectronic devices, preferably in, for example, displays based on polymeric organic light-emitting diodes.
摘要:
The invention relates to a method for the production of tertiary amines by reaction of secondary amines with aromatics or heteroaromatics in the presence of a base, a nickel or palladium compound and one or several phosphines, dialkoxy-, and/or diaryloxyphosphines in an inert solvent.Aromatic or heteroaromatics of this type play an important role in industry as reagents or intermediates for pharmaceuticals and agrochemicals and in diverse fine and electronics chemicals, above all in the rapidly growing field of organic semi-conductors, in particular in organic or polymeric light diodes, organic solar cells and organic ICs.
摘要:
The present invention describes a process for preparing highly pure tris-ortho-metalled organoiridium compounds and pure organometallic compounds of this type, especially compounds of the d8 metals, which may find use as coloring components in the near future as active components (=functional materials) in a series of different types of application which can be classed within the electronics industry in its broadest sense.
摘要:
The present invention relates to solutions and/or dispersions of organic semiconductors in a solvent mixture of at least two different organic solvents, characterized in that A. Each of the solvents on its own has a boiling point of below 200° C. and a melting point of 15° C. or less, B. at least one of the solvents has a boiling point in the range from greater than 140 to less than 200° C., C. the solvents used have no benzylic CH2 or CH groups, D. the solvents used are not benzene derivatives containing tert-butyl substituents or more than two methyl substituents, and their use in printing processes for producing layers of organic semiconductors, especially for the electronics industry.
摘要:
The present invention relates to the use of boron and aluminum compounds in electronics, in particular as electron transport material, as host material of the emission layer and as hole blocking material, in each case in phosphorescent OLEDs, and also to layers produced therefrom in phosphorescent OLEDs.
摘要:
The present invention describes novel organometallic compounds that are phosphorescence emitters. Such compounds can be used as active components (=functional materials) in a range of different applications that can be assigned in the broadest sense to the electronics industry. The compounds according to the invention are described by the formulae (I), (Ia), (II) and (IIa).