Abstract:
A laser surgical system for making incisions in ocular tissues during cataract surgery includes a laser system, an imaging device and a control system. The laser system includes a scanning assembly and a laser to generate a laser beam that incises ocular tissue. The imaging device acquires image data of a crystalline lens and constructs an image from the image data. The control system operates the imaging device to generate image data for the patient's crystalline lens, processes the image data to determine an anterior capsule incision scanning pattern for scanning a focal zone of the laser beam to perform an anterior capsule incision, and operates the laser and the scanning assembly to scan the focal zone of the laser beam in the anterior capsule incision scanning pattern, wherein the focal zone is guided by the control system based on the image data.
Abstract:
System and method for making incisions in eye tissue at different depths. The system and method focuses light, possibly in a pattern, at various focal points which are at various depths within the eye tissue. A segmented lens can be used to create multiple focal points simultaneously. Optimal incisions can be achieved by sequentially or simultaneously focusing lights at different depths, creating an expanded column of plasma, and creating a beam with an elongated waist.
Abstract:
System and method for making incisions in eye tissue at different depths. The system and method focuses light, possibly in a pattern, at various focal points which are at various depths within the eye tissue. A segmented lens can be used to create multiple focal points simultaneously. Optimal incisions can be achieved by sequentially or simultaneously focusing lights at different depths, creating an expanded column of plasma, and creating a beam with an elongated waist.