Abstract:
The wireless communication method used for transmitting interfering resource allocation information (IRAI) comprises a step of transmitting the IRAI through L1 signaling from the serving eNB to the victim UE, wherein the IRAI indicates only interfering resource block (RB) allocation within the bandwidth of RBs allocated to the victim UE at least in the case that the resource allocation type of the interfering UE is type 0, type 1, or type 2-L. The resource allocation type of the interfering UE can be signaled from the serving eNB to the victim UE within the downlink control information (DCI) of the victim UE for allocating resource. The indication mode of the IRAI for at least one interfering UE among the multiple interfering UEs that belong to a same interfering cell can be dependent on those interfering UEs whose IRAI has been indicated among the multiple interfering UEs.
Abstract:
The invention relates to a method for dynamically indicating a TDD reconfiguration to the mobile station by encoding the dynamic TDD re-configuration indication into the DCI or CRC calculated for the DCI. In one embodiment, the TDD configuration indication is implicitly encoded as an RNTI into the CRC, when scrambling the CRC for the DCI with a TDD-RNTI. In another embodiment, the TDD configuration indication is part of the DCI payload, while the CRC for the DCI is scrambled with a cell identifier, identifying the target cell for which the dynamic TDD re-configuration is to be applied. In still another embodiment, the TDD configuration indication is part of the DCI payload, where the DCI payload further includes an invalid parameter indicating to the mobile station that the DCI carries the TDD configuration indication.
Abstract:
Provided are a resource scheduling method, a resource determining method, an eNB, and a user equipment. The resource scheduling method for wireless communication is performed by the eNB. The wireless communication involves at least a first carrier and a second carrier. The resource scheduling method includes: transmitting a DCI in the first carrier to a UE to schedule downlink resources for a PDSCH of the second carrier, wherein the eNB is able to start transmitting a burst in the second carrier at a flexible time independent of the subframe boundaries of the second carrier after the second carrier is occupied by the eNB, and the DCI for a flexible PDSCH of the burst different from the normal PDSCH of the second carrier contains information on the time period scheduled for the flexible PDSCH. The flexible PDSCH and its corresponding RS can reuse the DwPTS subframe structure for minimal specification impact.
Abstract:
Provided are a resource scheduling method, a resource determining method, an eNB, and a user equipment. The resource scheduling method for wireless communication is performed by the eNB. The wireless communication involves at least a first carrier and a second carrier. The resource scheduling method includes: transmitting a DCI in the first carrier to a UE to schedule downlink resources for a PDSCH of the second carrier, wherein the eNB is able to start transmitting a burst in the second carrier at a flexible time independent of the subframe boundaries of the second carrier after the second carrier is occupied by the eNB, and the DCI for a flexible PDSCH of the burst different from the normal PDSCH of the second carrier contains information on the time period scheduled for the flexible PDSCH. The flexible PDSCH and its corresponding RS can reuse the DwPTS subframe structure for minimal specification impact.
Abstract:
The present disclosure relates to methods for reporting channel state information. The present disclosure also provides mobile stations for performing these methods, and computer readable media the instructions of which cause the mobile station to perform the methods described herein. For this purpose, the mobile station receives a trigger message that triggers the reporting of channel state information for at least one of the plurality of downlink component carriers, the trigger message being received in a subframe nTrigger, and reports the triggered channel state information for the at least one of the plurality of downlink component carriers based on reference signals present on the at least one of the plurality of downlink component carriers, in a subframe nReport later than nTrigger. The received trigger message indicates that the reference signals are present in a subframe nRS on the at least one of the plurality of downlink component carriers, where nTrigger≤nRS
Abstract:
The invention relates to a radio base station or user equipment for scheduling respectively performing uplink transmissions via an unlicensed cell configured between the user equipment and the radio base station. The UE can perform an uplink transmission via the unlicensed cell according to at least the following types. A first type spans a complete subframe duration and starts and ends at subframe boundaries followed by the UE. A second type spans a complete subframe duration and includes an additional time offset with respect to the subframe boundaries followed by the UE. A third type spans less than a complete subframe duration and includes an additional time offset with respect to the subframe boundaries followed by the UE. The UEs perform uplink transmissions according to one of the types in such a manner that at least between two directly-subsequent uplink transmissions a time gap with no uplink transmission occurs.
Abstract:
A user equipment includes circuitry which selects a random access preamble sequence, and a transmitter which transmits the random access preamble sequence to a base station in a frequency bandwidth of an unlicensed band, and performs at least one of a first operation and a second operation. In the first operation, the circuitry selects a first sequence as the random access preamble sequence, the first sequence having a length longer than a length of a random preamble sequence used for a licensed band, and the transmitter transmits the first sequence in the frequency bandwidth of the unlicensed band. In the second operation, the circuitry selects a second sequence as the random access preamble sequence, the second sequence having a length equal to the length of a random preamble sequence used for the licensed band, and the transmitter transmits the second sequence with repetitions in the frequency bandwidth of the unlicensed band.
Abstract:
The disclosure relates to a method for allocating radio resources to a user terminal for performing communication between a radio control entity and the user terminal in a communication system. At least first predetermined radio resources are configured in the user terminal for use in connection with a particular carrier and are associated with a particular format of a downlink control information, DCI, message. The user terminal receives a DCI message of the particular format from the radio control entity. Upon receiving the DCI message of the particular format, the user terminal identifies the first predetermined radio resources associated with this received DCI message, and using the identified first predetermined radio resources for communication between the user terminal and the radio control entity via the particular carrier. The particular carrier can be an unlicensed carrier.
Abstract:
The present disclosure relates to a method for transmitting and receiving a beamformed data transmission transmitted from a radio base station to a user equipment over an unlicensed band. The data transmission is transmitted by the radio base station within one or more resource blocks of a subframe, each resource block being composed of a plurality of resource elements. The beamformed data transmission is generated by the radio base station by 1) applying a first precoding for generating a beam directionality towards the user equipment to a subset of all the resource elements used for transmitting the data transmission in the subframe, and 2) applying a second precoding, different from the first precoding, to the remaining resource elements used for transmitting the data transmission in the subframe so as to achieve a radiation pattern different from the beam directionality towards the user equipment.
Abstract:
The disclosure relates to a method for providing, by a UE, feedback information of a retransmission protocol to a radio base station, the UE being configured with at least two cells. A least one cell bundling group is defined for the UE such that one of the at least one cell bundling group is associated with at least two out of the at least two cells. The UE communicates with the radio base station to receive downlink transmissions via at least one of the at least two cells. The UE operates a retransmission protocol with the radio base station to provide feedback information for the downlink communication. For each cell bundling group, the UE bundles feedback information generated in connection with those cells being associated with the respective cell bundling group so as to generate bundled feedback information per cell bundling group. The UE transmits the bundled feedback information of each cell bundling group to the radio base station.