Abstract:
A process for the preparation of 2,3-dimethylpentanal which comprises contacting 3-methyl-2-pentene with carbon monoxide and hydrogen in the presence of a rhodium carbonyl compound as catalyst. Rhodium carbonyl catalysts are those which contain only rhodium and carbon monoxide and in certain cases, also hydrogen. Especially contemplated are non-phosphine containing rhodium carbonyl catalysts.
Abstract:
The compound, bicyclo[4.3.0]nonane-3(4),7(8)-dicarboxylic acid and to a process for its preparation, wherein bicyclo[4.3.0]nona-3,7-diene is reacted with synthesis gas in an homogeneous organic phase in the presence of transition metal compounds of Group VIII of the Periodic Table containing complex-bound organophosphorus compounds, and of excess organophosphorus compound, at temperatures of 70 to 160° C. and pressures of 5 to 35 MPa, and the 3(4),7(8)-bisformylbicyclo[4.3.0]nonane thus obtained is oxidized, or is first hydrogenated to 3(4),7(8)-dihydroxymethylbicyclo[4.3.0]nonane and the diol thus obtained is reacted in an alkali melt.
Abstract:
3(4),7(8)-bis(aminomethyl)bicyclo[4.3.0]nonane and a process for its preparation, wherein bicyclo[4.3.0]nona-3,7-diene is reacted with synthesis gas in a homogeneous organic phase in the presence of transition metal compounds of Group VIII of the Periodic Table containing complex-bound organophosphorus compounds, and excess organophosphorus compound, at temperatures of 70 to 160° C. and pressures of 5 to 35 MPa, and the 3(4),7(8)-bisformylbicyclo[4.3.0]nonane thus obtained is reductively aminated.
Abstract:
The compound, bicyclo[4.3.0]nonane-3(4),7(8)-dicarboxylic acid and to a process for its preparation, wherein bicyclo[4.3.0]nona-3,7-diene is reacted with synthesis gas in an homogeneous organic phase in the presence of transition metal compounds of Group VIII of the Periodic Table containing complex-bound organophosphorus compounds, and of excess organophosphorus compound, at temperatures of 70 to 160° C. and pressures of 5 to 35 MPa, and the 3(4),7(8)-bisformylbicyclo[4.3.0]nonane thus obtained is oxidized, or is first hydrogenated to 3(4),7(8)-dihydroxymethylbicyclo[4.3.0]nonane and the diol thus obtained is reacted in an alkali melt.
Abstract:
The present invention relates to a process for preparing aliphatic straight-chain and β-alkyl-branched carboxylic acids by catalytic oxidation of aldehydes by means of oxygen or oxygen-containing gas mixtures. Alkali metal carboxylates or alkaline earth metal carboxylates or a mixture thereof in an amount, calculated as alkali metal or alkaline earth metal, of from 1 mmol each to from 10 mmol each per mole of aldehyde used and also metals or compounds of metals of groups 5 to 11 of the Periodic Table of the Elements in amounts of not more than 5 ppm, based on aldehyde used, are present as catalyst.
Abstract:
A process for preparing methacrolein by catalytic reaction of propionaldehyde with formaldehyde is disclosed wherein the catalyst comprises a mixture of secondary amine and organic carboxylic acid with up to 8 carbon atoms.
Abstract:
A catalytic process for preparing aliphatic straight-chain and β-alkyl-branched carboxylic acids of 5 to 13 carbon atoms by catalytic oxidation of the corresponding aldehydes by means of oxygen or oxygen-containing gas mixtures in the liquid phase in the presence of a catalyst system contains alkali metal carboxylates or alkaline earth metal carboxylates or a mixture thereof in an amount, calculated as alkali metal or alkaline earth metal, of 0.5 mmol to 15 mmol per mol of aldehyde used and also metals of groups 4 to 12 of the Periodic Table of the Elements, cerium or lanthanum in amounts of not more than 5 ppm, based on the aldehyde used, or compounds of such metals, with the catalyst system being the reaction product from an aldehyde oxidation reaction.
Abstract:
A process for dehydrating 2-methylpentanediol-2,4 to a mixture of 2-methyl-1,3-pentadiene and 4-methyl-1,3-pentadiene at elevated temperature in the presence of an acid catalyst using a polyglycol ether as a heat carrier, wherein a polyglycol ether containing from 80 to 100% by weight of a polyethylene glycol dimethyl ether of the formula CH3(OCH2CH2)nOCH3 where n=2-8 and from 0 to 20% by weight of a polyethylene glycol monomethyl ether of the formula CH3(OCH2CH2)nOH where n=2-8 based in each case on the total mass of polyglycol ether, is used.
Abstract:
A walking beam furnace comprises a hearth formed by fixed and walking beams disposed with their axes in the feed direction. Both the walking beams and the fixed beams are divided at positions spaced apart in the feed direction into sections, and each section of each beam is staggered relative to the adjacent section. As a result, the material to be annealed comes into contact with the cooled fixed beams at different positions at each of the conveying pauses and temperature balancing takes place at the points of contact.
Abstract:
The invention relates to a walking beam furnace, the hearth of which consists, at least partially, of longitudinal beams arranged side by side and alternately formed as fixed beams and walking beams. Each walking beam is lifted and lowered with the aid of lifting rollers, which run on ramps. The ramps are prolonged downwards by a longer distance than is required for the working lift of the walking beams. The walking beams are depressed, step by step, into a repair and maintenance plane which lies appreciably below the plane of the hearth, by moving down the lifting rollers into the region of the lower prolongation of the ramps. For this purpose, a lifting rod which connects all the lifting rollers belonging to a walking beam, is connected to an associated actuating cylinder via a pivotally movable perforated arm mounted at a fixed point, the lifting rod being extended piece by piece by means of extension sections and with the aid of a holding device, and being in each case reinserted into a lower hole in the perforated arm.