摘要:
A mechanism is provided for managing a process-to-process communication request. A call is received in an operating system from an application in the data processing system. The operating system passes the call to a host fabric interface controller in the data processing system without processing the call. The host fabric interface controller processes the call using state information associated with the call. The call is processed by the host fabric interface controller without intervention by the operating system.
摘要:
A mechanism is provided for managing a process-to-process communication request. A call is received in an operating system from an application in the data processing system. The operating system passes the call to a host fabric interface controller in the data processing system without processing the call. The host fabric interface controller processes the call using state information associated with the call. The call is processed by the host fabric interface controller without intervention by the operating system.
摘要:
Mechanisms are provided for processing streaming data at high sustained data rates. These mechanisms receive a plurality of data elements over a plurality of non-sequential communication channels and write the plurality of data elements directly to the file system of the data processing system in an unassembled manner. The mechanisms determining whether to perform a data scrubbing operation or not based on history information indicative of whether data elements in the plurality of data elements are being received in a substantially sequential manner. The mechanisms perform a data scrubbing operation, in response to a determination to perform data scrubbing, to identify any missing data elements in the plurality of data elements written to the tile system and assemble the plurality of data elements into a plurality of data streams in response to results of the data scrubbing indicating that there are no missing data elements.
摘要:
Mechanisms for performing a backend operation in a file system are provided. A backend operation on a portion of the file system is initiated. At least one indirect transition table data structure is created for performing the backend operation. Metadata corresponding to the portion of the file system is linked to the at least one indirect transition table data structure. The backend operation is performed on data in a sub-portion of the portion of the file system and the at least one indirect transition table data structure is updated with pointers to new locations of the data in the sub-portion as transitions of the data are completed. At least one data access operation is performed to the portion of the file system at substantially a same time as performing the backend operation on the data in the sub-portion of the portion of the file system.
摘要:
Disclosed are a method, a system and a computer program product for dynamically allocating and/or de-allocating resources and/or partitions that provide I/O and/or active storage access services in a supercomputing system. The supercomputing system can include multiple compute nodes, high performance computing (HPC) switches coupled to the compute nodes, and active non-volatile storage devices coupled to the compute nodes. Each of the compute nodes can be configured to communicate with another compute node through at least one of the HPC switches. In one or more embodiments, each of at least two compute nodes includes a storage controller and is configured to dynamically allocate and de-allocate a storage controller partition to provide storage services to the supercomputing system, and each of at least two compute nodes includes an I/O controller and is configured to dynamically allocate and de-allocate an I/O controller partition to provide I/O services to the supercomputing system.
摘要:
An addressing model is provided where all resources, including memory and devices, are addressed with internet protocol (IP) addresses. A task, such as an application, may be assigned a range of IP addresses rather than an effective address range. Thus, a processing element, such as an I/O adapter or even a printer, for example, may also be addressed using IP addresses without the need for library calls, device drivers, pinning memory, and so forth. This addressing model also provides full virtualization of resources across an IP interconnect, allowing a process to access an I/O device across a network.
摘要:
Mechanisms for performing a backend operation in a file system are provided. A backend operation on a portion of the file system is initiated. At least one indirect transition table data structure is created for performing the backend operation. Metadata corresponding to the portion of the file system is linked to the at least one indirect transition table data structure. The backend operation is performed on data in a sub-portion of the portion of the file system and the at least one indirect transition table data structure is updated with pointers to new locations of the data in the sub-portion as transitions of the data are completed. At least one data access operation is performed to the portion of the file system at substantially a same time as performing the backend operation on the data in the sub-portion of the portion of the file system.
摘要:
A mechanism is provided for managing a process-to-process inter-cluster communication request. A call from a first application is received in a first operating system in a first data processing system. The first operating system passes the call from the first operating system to a first host fabric interface controller in the first data processing system without processing the call. The first host fabric interface processes the call to determine a second data processing system in the plurality of data processing systems with which the call is associated, wherein the call is processed by the first host fabric interface without intervention by the first operating system. The first host fabric interface initiates an inter-cluster connection to a second host fabric interface in the second data processing. The call is then transferred to the second host fabric interface in the second data processing system via the inter-cluster connection.
摘要:
In a multinode data processing system in which nodes exchange information over a network or through a switch, the mechanism which enables out-of-order data transfer via Remote Direct Memory Access (RDMA) also provides a corresponding ability to carry out broadcast operations, multicast operations, third party operations and conditional RDMA operations. In a broadcast operation a source node transfers data packets in RDMA fashion to a plurality of destination nodes. Multicast operation works similarly except that distribution is selective. In third party operations a single central node in a cluster or network manages the transfer of data in RDMA fashion between other nodes or creates a mechanism for allowing a directed distribution of data between nodes. In conditional operation mode the transfer of data is conditioned upon one or more events occurring in either the source node or in the destination node.
摘要:
A mechanism is provided for managing an input/output device communication request. A first operating system passes a call from a first application intended for an input/output device in a second data processing system to a first host fabric interface controller in the first data processing system without processing the call. The first host fabric interface processes the call to determine the second data processing system with which the call is associated. The first host fabric interface initiates a connection to a second host fabric interface in the second data processing system and transfers the call to a second operating system associated with the input/output device in the second data processing system via the connection to the second host fabric interface. The second operating system then processes the call intended for the input/output device without assistance from any application running on the second data processing system.