Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in connection with providing additional security for communication of sensitive information within a LTE based WWAN. In one example, a communications device is equipped to generate a keystream based on a mobility management entity-user equipment (MME-UE) key, a non-access stratum (NAS) message count value, and a contextual string associated with an informational element, and the contextual information, and cryptographically process the informational element using the generated keystream. In such an example, the communications device may be a UE, a MME, etc.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in connection with facilitating secure D2D communications in a LTE based WWAN. In one example, a UE is equipped to send a shared key request using a first non-access stratum (NAS) message to a MME, calculate a first UE key based on a MME-first UE key, an uplink count value, and at least a portion of contextual information, receive a second NAS message from the MME, and calculate a final UE key based at least on the first UE key. In another example, a MME is equipped to receive a NAS message such as the message send by the first UE, calculate a first UE key, receive a message at least indicating successful contact with the second UE, and send a second NAS message to the first UE indicating the successful contact.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may transmit, to a relay UE, a first message comprising a first freshness parameter, an identity of the UE, and authentication information, where the authentication information is used by a network node to authenticate the UE with security context information of the UE. The UE may derive a relay key for security establishment between the UE and the relay UE based on the first freshness parameter, a set of key generation parameters, and a shared key with the network node. The UE may derive a relay session key for security establishment between the UE and the relay UE based on the relay key, a first nonce of the UE, and a second nonce of the relay UE. Numerous other aspects are described.
Abstract:
In an aspect, the present disclosure includes a method, apparatus, and computer readable medium for wireless communications for configuring of a NAS COUNT value of a mapped EPS security context associated with an intersystem change of a UE from a 5G system to an EPS. The aspect includes generating, by a UE, a mapped EPS security context associated with an intersystem change of the UE from a 5G system to an EPS, wherein the mapped EPS security context comprises security parameters created based a 5G security context used for the 5G system, the security parameters enabling security-related communications between the UE and a network entity; determining an UL NAS COUNT value and the DL NAS COUNT value for the mapped EPS security context; and transmitting, by the UE, a NAS message to the network entity, the NAS message including the UL NAS COUNT value of the mapped EPS security context.
Abstract:
The present disclosure provides techniques that may be applied, for example, for providing network policy information in a secure manner. In some cases, a UE may receive a first message for establishing a secure connection with a network, wherein the first message comprises network policy information, generate a first key based in part on the network policy information, and use the first key to verify the network policy information.
Abstract:
Aspects directed towards steering of roaming (SoR) are disclosed. In one example, a communication from a public land mobile network (PLMN) is received by a user equipment (UE) in which the communication indicates an acceptance of a UE registration with the PLMN. This example further includes performing a determination of whether an SoR indicator associated with a home PLMN (HPLMN) is embedded within the communication. The UE then manages PLMN selection according to the determination. In another example, a UE is configured to operate according to an SoR configuration in which the UE is configured to ascertain whether an SoR indicator is embedded within a communication from a PLMN. An SoR indicator associated with an HPLMN is then generated and subsequently transmitted from the HPLMN to the UE via the PLMN.
Abstract:
A device that identifies entry into a new service area, transmits a service area update request to a network device associated with a network, receives a control plane message from the network indicating control plane device relocation or a key refresh due to a service area change in response to transmitting the service area update request, and derives a first key based in part on data included in the control plane message and a second key shared between the device and a key management device. Another device that receives a handover command from a network device associated with a network, the handover command indicating a new service area, derives a first key based on data included in the handover command and on a second key shared between the device and a key management device, and sends a handover confirmation message that is secured based on the first key.
Abstract:
Methods, systems, and devices for wireless communication are described that support security key derivation for handover. A network entity (e.g., an access and mobility function (AMF)) may establish an access stratum (AS) key to ensure secure communications between a user equipment (UE) and a base station. If the UE relocates to a new network entity (e.g., target network entity), the initial network entity (e.g., source network entity) may perform a handover procedure to the target network entity. In some aspects, the network entities may derive a unified AS key for the handover procedure. Additionally, the network entities may utilize one or more intermediate keys (e.g., refreshed intermediate keys) derived from, in part, respective freshness parameters for the handover procedure. The target network entity may then utilize the derived intermediate keys to derive the AS key for the handover procedure and establish communications with the UE.
Abstract:
Methods, systems, and devices for wireless communications are described. A first parent node of a wireless backhaul network may receive, from a donor node of the wireless backhaul network, a token for a child node of the wireless backhaul network, the token being unique to a first wireless link between the first parent node and the child node. The first parent node may determine that a triggering event has occurred for a second wireless link between the first parent node and a second parent node. The first parent node may transmit, in response to determining that the triggering event has occurred, the token to the child node over the first wireless link to indicate for the child node to select a third parent node of the wireless backhaul network.
Abstract:
A network entity may provision a UE and a base station with parameters for securing network communications. The network entity may send a system parameter to a UE and a private security key to a base station. Additionally, the UE and the base station may each receive synchronization information from the network which may be used to create a randomness parameter. The base station may create a signature based on the private security key, a cell identifier, and the randomness parameter and include the signature in a system information message that is to be broadcasted to one or more UEs. A UE connecting to the base station may receive the system information message from the base station, determine the cell identifier, and verify the system information message based on one or more of the cell identifier, the system parameter, or the randomness parameter.