Abstract:
A MISFET is formed to include: a co-doped layer that is formed over a substrate and has an n-type semiconductor region and a p-type semiconductor region; and a gate electrode formed over the co-doped layer via a gate insulation film. The co-doped layer contains a larger amount of Mg, a p-type impurity, than that of Si, an n-type impurity. Accordingly, the carriers (electrons) resulting from the n-type impurities (herein, Si) in the co-doped layer are canceled by the carriers (holes) resulting from p-type impurities (herein, Mg), thereby allowing the co-doped layer to serve as the p-type semiconductor region. Mg can be inactivated by introducing hydrogen into, of the co-doped layer, a region where the n-type semiconductor region is to be formed, thereby allowing the region to serve as the n-type semiconductor region. By thus introducing hydrogen into the co-doped layer, the p-type semiconductor region and the n-type semiconductor region can be formed in the same layer.
Abstract:
Characteristics of a semiconductor device are improved. A semiconductor device includes a voltage clamp layer, a channel base layer, a channel layer, and a barrier layer on a substrate. A trench extends to a certain depth of the channel layer through the barrier layer. A gate electrode is disposed on a gate insulating film within the trench. A source electrode and a drain electrode are provided on the two respective sides of the gate electrode. A coupling within a through-hole that extends to the voltage clamp layer electrically couples the voltage clamp layer to the source electrode. An impurity region containing an impurity having an acceptor level deeper than that of a p-type impurity is provided under the through-hole. The voltage clamp layer decreases variations in characteristics such as threshold voltage and on resistance. The contact resistance is reduced through hopping conduction due to the impurity in the impurity region.
Abstract:
The ringing of a switching waveform of a semiconductor device is restrained. For example, an interconnect (L5) is laid which functions as a source of a power transistor (Q3) and a cathode of a diode (D4), and further functioning as a drain of a power transistor (Q4) and an anode of a diode (D3). In other words, a power transistor and a diode coupled to this power transistor in series are formed in the same semiconductor chip; and further an interconnect functioning as a drain of the power transistor and an interconnect functioning as an anode of the diode are made common to each other. This structure makes it possible to decrease a parasite inductance between the power transistor and the diode coupled to each other in series.