Abstract:
Three dimensional projection systems may be single projector or multiple projector systems. These 3D projection systems may include a one or more polarization conversion systems (PCS). Each PCS may be designed for relatively small throw ratios and thus, may be designed to accommodate the small throw ratios. Each PCS may include a polarizing beam splitter, a first optical stack, a reflector and a second quarter wave retarder. The first optical stack may include a rotator, a polarizer, a polarization switch and a first quarter wave retarder. Each PCS may receive light from a respective projector, and the PBS in each PCS may direct the light toward the first optical stacks. The light may be converted to a different polarization state as it passes through the first optical stack. The converted light may then be re-directed by a reflecting element to a second quarter wave retarder. The second quarter wave retarder may convert linearly polarized light to circularly polarized light.
Abstract:
Liquid crystal devices are described that maintain performance of polarization/amplitude modulation under high irradiance conditions. Configurations that isolate polarizing elements under high thermal load are discussed which allow other elements, such as glass, which may be sensitive to stress birefringence to remain near optimum thermal conditions.
Abstract:
Disclosed embodiments include stereoscopic systems having at least one compensator operable to reduce the sensitivity of polarization control over incidence angle of image source optics and analyzer optics. In an exemplary embodiment, the disclosed compensator is operable to compensate polarization changes induced by optics at either or both the image source subsystem and the analyzer subsystem, in which the polarization changes would be operable to cause leakage at the analyzer subsystem if uncompensated. As such, the disclosed compensators and compensation techniques are operable to reduce leakage at the analyzer subsystem even if the disclosed compensator may be located at the analyzer subsystem.
Abstract:
Disclosed embodiments relate to eyewear configured to reduce stray light. An exemplary embodiment of the eyewear accounts for various design factors, including the cross sectional profile of the rim, the micro topography of the rim surface, the reflectivity, the theater or room geometry, proximity of the eye to the lens, lens size, and the screen gain. An exemplary eyewear includes lenses connected to the rims of a frame, and a path may be defined through a maximum height of the outer flange portion of a rim and a maximum height of the inner flange portion of the rim section. The path may be inclined at an angle relative to an angle α relative to a longitudinal axis defined by the lenses.
Abstract:
Disclosed herein are systems and related methods for reducing speckle on display screen. More specifically, screen vibration is used to reduce speckle, and in accordance with the disclosed principles, the vibration may be achieved by using wave-based actuation (e.g., acoustic or electromagnetic waves) to vibrate the screen. In an exemplary embodiment, a speckle reducing system may comprise at least one actuating element located proximate to, but not in physical contact with, a display screen. In addition, the at least one actuating element may be configured to generate waves directed towards the display screen. When the waves impact the display screen, the waves impart vibration to the display screen.
Abstract:
Disclosed is a system for balancing brightness in cinema presentation. The brightness between 2D and 3D mode in cinema presentation may be substantially maintained without a substantial change in projector lamp current when switching between the two presentation modes. A dimmer can be engaged which allows the light in at least one path to be attenuated during 2D operation. The dimmer can be activated in any number of ways, including, but not limited to, mechanically, electromechanically, or electro-optically, any combination thereof, and so forth. The dimmer may be inserted in one light path and may be physically removed from the light path during 3D operation in order to maximize 3D efficiency.
Abstract:
A method for providing a projection screen for receiving stereoscopic images may include providing a substrate with a contoured, reflective surface, wherein light reflected from the substrate substantially may undergo no more than a single reflection and may also include coating a first layer on the substrate with a contoured, reflective surface. The first layer may substantially maintain the same optical properties as the substrate without the first layer. The first layer may be substantially conformal to the surface of the substrate and also may be a self assembled monolayer coating which may include at least a functional group that is hydrophobic.
Abstract:
Disclosed herein are systems and related methods for reducing speckle on display screen. More specifically, screen vibration is used to reduce speckle, and in accordance with the disclosed principles, the vibration may be achieved by using wave-based actuation (e.g., acoustic or electromagnetic waves) to vibrate the screen. In an exemplary embodiment, a speckle reducing system may comprise at least one actuating element located proximate to, but not in physical contact with, a display screen. In addition, the at least one actuating element may be configured to generate waves directed towards the display screen. When the waves impact the display screen, the waves impart vibration to the display screen.
Abstract:
A stiffening strip at selected edges of a screen may enable the use and mounting of a high-elastic modulus substrate screen material. Such screen materials may be engineered to provide polarization-preserving characteristics, and be applied to or part of the high-elastic modulus substrate. Furthermore, the stiffening strip may enable the use of screen vibration techniques to reduce speckle in display applications that use projection screens, particularly those display applications using illumination sources prone to speckle such as laser-based projection. The screen vibration may be provided by a vibrating device attached to the stiffening strip.
Abstract:
Stereoscopic eyewear with compound curvature may be employed to view three dimensional content. The manufacture of such eyewear may be achieved by thermoforming a first material and by thermoforming a second material. The first and second materials may be in roll stock form prior to thermoforming, and the first layer may be polarizer material, while the second layer may be retarder material. Each of the first and second materials may be thermoformed by employing optimized thermoforming conditions for each of the two materials. Additionally, the two thermoforming lines may be timed so that the curved shapes of the first material in roll stock form may be substantially synchronized with the curved shapes of the second material in roll stock form, which may allow the curved shapes of each of the first and second materials in roll stock form may be joined together.