摘要:
An improved fiber reinforced glass composite includes a refractory fiber in a matrix of a nitrogen-containing black glass ceramic having the empirical formula SiN.sub.z C.sub.x O.sub.y where x ranges from greater than zero up to about 2.0, preferably 0.1 to 1.0, y ranges from 0.5 up to about 3.0, preferably 0.7 to 1.8, and z ranges from above zero up to about 1.5, preferably 0.2 to 1.0. Preferably the black glass ceramic is derived from cyclosiloxane monomers containing a vinyl group attached to silicon and/or a hydride-silicon group. The cyclosiloxane monomers are polymerized and then pyrolyzed in an ammonia-containing atmosphere to produce the nitrogen-containing black glass (silicon oxycarbonitride).
摘要:
A black glass having the empirical formula SiCxOy where x is greater than zero and up to about 2.0 and y is greater than zero and up to about 2.2 is produced from a cyclosiloxane polymer precursor by pyrolysis in the presence of oxygen by heating at a rate exceeding about 5.degree. C./min.
摘要翻译:具有经验式为SiC x O y的黑色玻璃,其中x大于零且高达约2.0,并且y大于零并且高达约2.2,由环硅氧烷聚合物前体通过在氧气存在下通过在超过 约5℃/分钟。
摘要:
SiCxOy where x is greater than zero and up to about 2.0 and y is greater than zero and up to about 2.2 is produced from a cyclosiloxane polymer precursor by pyrolysis in the presence of oxygen by heating at a rate exceeding about 5.degree. C/min.
摘要翻译:通过在氧气存在下通过以超过约5℃/分钟的速率加热的热分解从环硅氧烷聚合物前体产生x大于零且高达约2.0且y大于零并且高达约2.2的SiC x O y。
摘要:
A process for forming a high temperature oxidation resistant coating on a carbon-carbon composite is disclosed and claimed. The process comprises applying a cyclosiloxane monomer blend containing a filler such as silicon carbide to a carbon-carbon composite, polymerizing and pyrolyzing said blend to form a filled black glass protective coating on the carbon-carbon composite.
摘要:
Strong fibers of poly(ethylene oxide) result from crystallization of the polymer of molecular weight of at least about 500,000 in a shear flow field. Using solutions of a polymer with a molecular weight greater than about 1,000,000, fibers with a tensile strength and tensile modulus of at least 0.1 and 0.5 GPa, respectively, can be readily obtained. Crystallization from a xylene solution within the range from about 35.degree. to about 45.degree. C. is particularly effective.