Abstract:
An apparatus includes a write pole magnetically coupled to write coils that generate a first magnetic field during a switching event. The apparatus includes a shield at a media-facing surface and proximate the write pole. A conductive element is disposed proximate the shield and configured to generate a second magnetic field opposite to the first magnetic field during the switching event. A selected one of the write coils is located adjacent the shield separate from others of the write coils.
Abstract:
In accordance with one embodiment, an apparatus can be configured that includes a main pole layer of magnetic material; a second layer of magnetic material; a first gap layer of non-magnetic material disposed between the main pole layer and the second layer of magnetic material; a second gap layer of non-magnetic material disposed between the main pole layer and the second layer of magnetic material; and wherein the second gap layer of non-magnetic material is disposed directly adjacent to the second layer of magnetic material. In accordance with one embodiment, this allows the gap to serve as a non-magnetic seed for the second layer of magnetic material. In accordance with one embodiment, this allows the gap to serve as a non-magnetic seed for the second layer of magnetic material. In accordance with one embodiment, a method of manufacturing such a device may also be utilized.
Abstract:
In accordance with one embodiment, a method may be implemented by depositing a non-magnetic gap layer of material above a main pole layer of magnetic material; depositing a sacrificial layer of material above the non-magnetic gap layer of material; etching a portion of the sacrificial layer of material while not entirely removing the sacrificial layer of material; and depositing additional sacrificial material to the etched sacrificial layer.
Abstract:
A write pole structure disclosed herein includes a write pole, a trailing shield, and a high magnetic moment (HMM) material layer on a surface of the trailing shield facing the write pole.
Abstract:
A write head, the write head having an air bearing surface, the write head including a magnetic write pole, wherein at the air bearing surface, the write pole has a trailing surface, a leading surface that is opposite the trailing surface, and first and second surfaces; a trailing shield proximate the trailing surface of the magnetic write pole; first and second gaps proximate the first and second surfaces of the magnetic write pole; first and second side shields proximate the first and second gaps, each of the first and second side shields having a trailing shield surface; and first and second antiferromagnetic-coupling layers positioned between the trailing shield surfaces of the first and second side shields and the trailing shield.
Abstract:
A recording head has a near-field transducer proximate a media-facing surface of the recording head. A write pole has a leading edge proximate to and facing the near-field transducer at the media-facing surface. A magnetic shield faces the leading edge of the write pole at the media-facing surface and is magnetically coupled to the write pole. The magnetic shield has a notch centered over the near-field transducer.
Abstract:
A recording head includes a magnetic write transducer proximate a near-field transducer. The magnetic write transduce includes a yoke extending in a direction normal to a media-facing surface and a having an edge facing and recessed from the media-facing surface. A write pole extends beyond the first end of the yoke towards the media-facing surface and overlaps a first surface of the yoke that faces the near-field transducer. The write pole has a stepped edge facing away from the media-facing surface. Two or more coil turns are stacked relative to one another in a down-track direction. The two or more coils face a second surface of the yoke that is opposed to the first surface.
Abstract:
A recording head has a near-field transducer at a media-facing surface of the recording head and a write pole on a first side of the near field transducer. A first coil induces a first flux in the write pole. The recording head includes a shield on a second side of the near-field transducer that faces away from the first side. A second coil is proximate the shield and induces a second flux in the shield that controls a field angle of the first flux.
Abstract:
A data writer can have at least a write pole separated from first and second side shields by a continuous dielectric gap layer. Each side shield may have first and second shield sub-layers configured with different magnetic moments that increase relative to the sub-layer's distance from the write pole. The side shields may wrap around a leading tip of the write pole to form a box shield.
Abstract:
A data writer may be configured with at least a write pole continuously extending from an air bearing surface to a via. The write pole can contact at least one yoke that contacts the write pole. The write pole and yoke may each be disposed between and separated from a write coil that has a single turn and continuously extends to opposite sides of the write pole.