Abstract:
The present technique relates to a decoding device and a decoding method, and an encoding device and an encoding method, capable of performing encoding and decoding independently in the time direction for each tile. A decoding unit generates a prediction image by performing, for each of tiles, motion compensation of a reference image within a co-located tile based on tile splittable information indicating that decoding is allowed for each of the tiles and motion vector information representing a motion vector used for generating encoded data of a decoding target current image when a picture of the current image is split into the tiles and decoded. The decoding unit decodes the encoded data using the prediction image. The present technique is applicable to a decoding device, for example.
Abstract:
The present technique relates to an image processing apparatus and an image processing method capable of generating a color image of a display viewpoint using a color image and a depth image of a predetermined viewpoint. The viewpoint generation information generation unit generates viewpoint generation information used to generate a color image of a display viewpoint in accordance with a generation method of the color image of the display viewpoint obtained by performing warping processing using multi-viewpoint corrected color images and multi-viewpoint depth images. The multi-viewpoint image encoding unit encodes the multi-viewpoint corrected color images and the multi-viewpoint depth images, and transmits them with the viewpoint generation information. The present technique can be applied to, for example, a multi-viewpoint image processing apparatus.
Abstract:
An image processing apparatus includes a receiving unit configured to receive image data of program content and genre information relating to the program content, a selection unit configured to select a size selection parameter for causing the genre information received by the receiving unit to be reflected in a block size, a determination unit configured to determine a block size in accordance with the size selection parameter selected by the selection unit, the block size being used for orthogonal transformation, and an orthogonal transformation unit configured to perform orthogonal transformation on the image data received by the receiving unit at the block size determined by the determination unit.
Abstract:
Provided is an imaging control device including a result receiving unit configured to receive an example image selected by an image processing device used for image processing using image information, the image information being information regarding an image captured by an imaging unit used for image capturing, a selection result transmitting unit configured to transmit information regarding the example image received by the result receiving unit to the image processing device, a setting receiving unit configured to receive setting information generated by the image processing device based on the example image transmitted from the selection result transmitting unit, the setting information indicating a setting condition when image capturing is performed like the example image, and a setting change unit configured to change an imaging setting of the imaging unit using the setting information received by the setting receiving unit.
Abstract:
The present disclosure relates to an image processing device and method that enable improvement in processing efficiency in encoding or decoding.A type E0 of an LCU 115 and its coefficient are determined on the encoder side. The coefficient of the type E0 was sent to the decoder side at the time of the LCU 111, and has been stored in an EO buffer included in an adaptive offset filter on the decoder side. For the LCU 115, therefore, a copy of the coefficient of the type E0 in the EO buffer is used on decoder side without the sending of the coefficient of the type E0. As described above, the parameters of the adaptive offset filter, which are transmitted in one batch at the beginning of a frame in the related art, are sent sequentially at the beginning of an LCU for each LCU. The present disclosure can be applied to, for example, an image processing device.