Abstract:
A first current proportional to absolute temperature flows in a first current line through a first p-n junction and a second p-n junction arranged in series. A cascaded arrangement of p-n junctions is coupled to the second p-n junction and includes a further p-n junction with a current flowing therethrough that has a third order proportionality on absolute temperature. A differential circuit has a first input coupled to the further p-n junction and a second input coupled to a current mirror from the first p-n junction, with the differential circuit configured to generate a bandgap voltage with a low temperature drift from a sum of first voltage (that is PTAT) derived from the first current and a second voltage (that is PTAT3) derived from the third current.
Abstract:
A comparator circuit including: a first node and a second node, which receive a first current and a second current, respectively; a first current mirror, which includes a first load transistor and a first output transistor; and a second current mirror, which includes a second load transistor and a second output transistor. The comparator circuit further includes: a first feedback transistor and a second feedback transistor cross-coupled together, the control terminals of the first and second feedback transistors being connected to the first and second nodes, respectively; a first resistor, having a first terminal, which is connected to the control terminal of the first load transistor, and a second terminal, which is connected to the first node and to the control terminal of the first output transistor; and a second resistor, having a first terminal, connected to the control terminal of the second load transistor, and a second terminal, connected to the second node and to the control terminal of the second output transistor.
Abstract:
A MEMS acoustic transducer has: a detection structure, which generates an electrical detection quantity as a function of a detected acoustic signal; and an electronic interface circuit, which is operatively coupled to the detection structure and generates an electrical output quantity as a function of the electrical detection quantity. The detection structure has a first micromechanical structure of a capacitive type and a second micromechanical structure of a capacitive type, each including a membrane that faces and is capacitively coupled to a rigid electrode and defines a respective first detection capacitor and second detection capacitor; the electronic interface circuit defines an electrical connection in series of the first detection capacitor and second detection capacitor between a biasing line and a reference line, and further has a first single-output amplifier and a second single-output amplifier, which are coupled to a respective one of the first detection capacitor and the second detection capacitor and have a respective first output terminal and second output terminal, between which the electrical output quantity is present.
Abstract:
A phase shifter, which carries out a ninety-degree phase shift of a sinusoidal input signal having an input frequency, at the same input frequency, envisages: a continuous-time all-pass filter stage, which receives the sinusoidal input signal and generates an output signal phase-shifted by 90° at a phase-shift frequency that is a function of a RC time constant of the all-pass filter stage; and a calibration stage, which is coupled to the all-pass filter stage and generates a calibration signal for the all-pass filter stage, such that the phase-shift frequency is equal to the input frequency of the sinusoidal input signal, irrespective of variations of the value of the input frequency and/or of the RC time constant with respect to a nominal value.
Abstract:
A MEMS acoustic transducer device has a capacitive microelectromechanical sensing structure and a biasing circuit. The biasing circuit includes a voltage-boosting circuit that supplies a boosted voltage on an output terminal, and a high-impedance insulating circuit element set between the output terminal and a terminal of the sensing structure, which defines a first high-impedance node associated with the insulating circuit element. The biasing circuit has: a pre-charge stage that generates a first pre-charge voltage on a first output thereof, as a function of, and distinct from, the boosted voltage; and a first switch element set between the first output and the first high-impedance node. The first switch element is operable for selectively connecting the first high-impedance node to the first output, during a phase of start-up of the biasing circuit, for biasing the first high-impedance node to the first pre-charge voltage.
Abstract:
A MEMS acoustic transducer device has a capacitive microelectromechanical sensing structure and a biasing circuit. The biasing circuit includes a voltage-boosting circuit that supplies a boosted voltage on an output terminal, and a high-impedance insulating circuit element set between the output terminal and a terminal of the sensing structure, which defines a first high-impedance node associated with the insulating circuit element. The biasing circuit has: a pre-charge stage that generates a first pre-charge voltage on a first output thereof, as a function of, and distinct from, the boosted voltage; and a first switch element set between the first output and the first high-impedance node. The first switch element is operable for selectively connecting the first high-impedance node to the first output, during a phase of start-up of the biasing circuit, for biasing the first high-impedance node to the first pre-charge voltage.