Abstract:
The invention relates to a method for transmitting a periodic channel quality report (CSI) and/or a sounding reference symbol (SRS) from a UE to an eNodeB. To avoid double decoding at the eNodeB in transient phases, a deterministic behavior of the UE is defined by the invention, according to which the eNodeB can unambiguously determine whether the UE will transmit the CSI/SRS or not. According to one embodiment, the UL grants and/or DL assignments received until and including subframe N−4 only are considered; UL grants and/or DL assignments received by the UE after subframe N−4 are discarded for the determination. Additionally, DRX-related timers at subframe N−4 are considered for the determination. In a second embodiment, DRX MAC control elements from the eNodeB, instructing the UE to enter DRX, i.e., become Non-Active, are only considered for the determination if they are received before subframe N−4, i.e., until and including subframe N−(4+k).
Abstract:
The present invention relates to a transmitting terminal for transmitting data to a receiving terminal over a direct link connection. The transmitting terminal comprises a receiving unit that receives from the base station a timing command for adjusting an uplink transmission timing value for data transmissions to the base station. A generating unit generates direct link timing information, based on the uplink transmission timing value, the direct link timing information being usable for generating a direct link transmission timing value for determining the timing of the data transmission over the direct link. A transmitting unit transmits to the receiving terminal the generated direct link timing information, the direct link timing information being usable at the receiving terminal for generating a direct link reception timing value for determining the reception timing of data to be received on the direct link from the transmitting terminal.
Abstract:
The purpose of the present invention is to inhibit an increase in the amount of A/N resources, without changing the timing at which the error detection result of an SCell is notified when UL-DL configurations to be configured for each of the unit bands are different, from the timing at which the error detection result is notified when just a single unit band is configured. A control unit (208) transmits, using a first unit band, a response signal including error detection results about data received with both the first unit band and a second unit band. In a first composition pattern set for the first unit band, an uplink communication subframe is set to be the same timing as at least an uplink communication subframe of a second composition pattern set for the second unit band.
Abstract:
Disclosed is a base station capable of appropriately configuring a resource on which EPDCCH is located when soft combining is applied. The base station includes configuration section 102 that configures an EPDCCH set in a plurality of subframes, the EPDCCH set being formed of ECCEs to which control information (assignment information) transmitted over the plurality of subframes is assigned; and an assignment section 105 that assigns the control information to any of the ECCEs in each of the plurality of subframes.
Abstract:
Disclosed is a base station capable of appropriately configuring a resource on which EPDCCH is located when soft combining is applied. The base station includes configuration section (102) that configures an EPDCCH set in a plurality of subframes, the EPDCCH set being formed of ECCEs to which control information (assignment information) transmitted over the plurality of subframes is assigned; and an assignment section (105) that assigns the control information to any of the ECCEs in each of the plurality of subframes.
Abstract:
A communication apparatus and a communication method capable of suppressing an increase of bits used for a request to send a reference signal and flexibly setting a resource used for sending a reference signal. In a base station, a transmission processing unit transmits, in one of a plurality of formats, control information containing a request to send a sounding reference signal (A-SRS), and a reception processing unit receives the transmitted A-SRS using the resource specified by the format of the transmitted control information. Then, the plurality of formats is associated with each different SRS resource by a setting unit.
Abstract:
Provided is a receiver device that can switch between transmission methods, while minimizing increase in the number of blind decryption iterations and the amount of signaling needed for acknowledgement. In this device, a receiver part (201) receives a signal mapped to any of a plurality of mapping candidates; and according to application levels established for each of the plurality of mapping candidates, a control signal processor (205) performs blind decryption of the plurality of mapping candidates, employing either a first transmission method using a single antenna port to carry out precoding based on feedback information from the receiver device, or a second transmission method involving transmission diversity employing multiple antenna ports.
Abstract:
Provided are D2D communication methods and D2D-enabled wireless devices. The D2D communication method performed by a D2D-enabled wireless device includes transmitting signals in D2D subframes with a randomization pattern. The randomization pattern is designed based on relative subframe positions in a virtual pure D2D subframe sequence composed of multiple D2D subframes in one or more radio frames. In another embodiment, the eNB scheduling based resource allocation and the D2D-enabled wireless device selection on its own based resource allocation share a same randomization pattern design.
Abstract:
The present disclosure provides a power control method in device to device (D2D) communication and a user equipment for performing the power control method. The method includes computing a power value of device to device (D2D) transmission of a user equipment performing D2D communication in a subframe in a serving cell, based on a power control adjustment state of a Long Term Evolution (LTE) wide area network (WAN) uplink channel of the user equipment and an offset or a ratio indicated by a transmit power control (TPC) command indicated in D2D grant or downlink control information (DCI) format 3/3A.
Abstract:
Provided are D2D communication methods and D2D-enabled wireless devices. The D2D communication method performed by a D2D-enabled wireless device includes transmitting signals in D2D subframes with a randomization pattern. The randomization pattern is designed based on relative subframe positions in a virtual pure D2D subframe sequence composed of multiple D2D subframes in one or more radio frames. In another embodiment, the eNB scheduling based resource allocation and the D2D-enabled wireless device selection on its own based resource allocation share a same randomization pattern design.