摘要:
Systems and methods for facilitating inter-cell interference coordination using load indication are described. A UE may receive load indicator signals from a plurality of base stations in adjacent cells and determine, based at least in part on the load indicator signals, a transmit power metric. The transmit power metric may be provided to a serving base station, which may allocate uplink resources based on the transmit power metric. Additional information related to receiver sensitivity and/or path loss may be used to determine the transmit power metric.
摘要:
A method for inter-cell interference coordination (ICIC) by a home evolved NodeB (HeNB) is described. A portion of bandwidth is reserved for a user equipment (UE). Notification of the reserved portion of bandwidth is sent to at least one potentially interfering evolved NodeB (eNB). A data exchange is performed with the UE using the reserved portion of bandwidth. Notification is sent to the potentially interfering eNBs releasing the reserved portion of bandwidth.
摘要:
Systems and methodologies are described that facilitate system frame number (SFN) indication and identification during a random access procedure (e.g., associated with a handover). As described herein, a target cell can configure one or more Random Access Responses (RARs) designated for transmission to a terminal during the access phase of a handover to include the SFN of the target cell. Techniques are further described herein by which the target cell can include SFN information in a sub-header associated with a RAR, in the payload of a RAR, and/or in other appropriate manners. In addition, the target cell can configure one or more flags of the RAR to indicate the presence of SFN information. Upon receiving a RAR with embedded SFN information, a terminal can utilize the SFN for operations such as frequency hopping or uplink resource configuration as described herein.
摘要:
Channel dependent credit accumulation for determining a mobile handover is provided herein. In some aspects, a characteristic(s) of a source channel(s) serving a mobile device and of one or more target channels can be evaluated. Magnitudes of the evaluated characteristics can be utilized to generate handover credits associated with the target channel(s) (e.g., based on some function of a difference in the magnitudes). If a concurrent number of credits associated with a target channel equals or rises above one or more threshold levels, a mobile device can initiate a handover. As described, disparity in source and target channel quality, signal strength, etc., can be determined to increase probability of a handover based on channel degradation over one or more time intervals.
摘要:
Systems and methodologies are described that facilitate handing over mobile device communications in a wireless network from a source base station to a target base station without using a random access channel (RACH). In this regard, the mobile device can monitor multiple base stations determining timing information related thereto and access scheduling request channels for the base stations. When ready for handover, the mobile device can request data resources over the scheduling request channel using the appropriate timing information.
摘要:
A data traffic responsive battery-saving approach for a wireless user equipment (UE) device such as an data packet capable cellphone incorporates flexible discontinuous transmission and reception (DTX-DRX) when in Long Term Evolution (LTE) active mode as dictated by an evolved radio access network (RAN) such as an evolved base node (eNode B). A UE device requests are made on unsynchronized random access channel (RACH). Lengthening a duration of DRX and reducing requirements for synchronization uplink transmissions results in power savings of up to 75%, as well as creating opportunities for reducing interference and for allocating additional time slots for data. This power savings is compatible with other downlink scheduling proposals, with control channel-less Voice-over-IP (VoIP), and need not target those UE devices in bad radio conditions. Legacy UE devices that can interact with the eNode B by being capable of radio resource control (RRC) signaling continue to be compatible.
摘要:
Techniques for deriving channel estimates with different channel estimation filters are described. In one scheme, a filter selection metric is determined for a signal to be recovered, a channel estimation filter is selected based on the filter selection metric, and a channel estimate is derived with the selected channel estimation filter. In another scheme, a first channel estimate is derived with a first channel estimation filter having a first filter response, a first signal is recovered with the first channel estimate, and interference due to the first signal is estimated and removed. A second channel estimate is derived with a second channel estimation filter having a second filter response that is different from the first filter response.
摘要:
The invention includes a device and method for improving the responsiveness of the transmitter power control function so that the transmission power is more quickly and accurately controlled over a wider range of dynamic power adjustment during transmission. The present invention is directed to a dynamic transmission power control device and methodology having improved power control loop bandwidth and low power control loop variance. The invention is particularly useful for wireless communications, and more particularly to wireless digital devices having signals with large information frame size and low target frame error rate (FER). The dynamic transmission power control methodology includes a receiver including multiple power control loops for dynamically determining the amount of adjustment to make to the incoming transmission signal to achieve a desired level of signal quality at the lowest possible transmission power. For example, two power control adjustment loops, for example an outer loop and an outer-outer loop, may be provided for determining a target signal to noise ratio (SNR). The receiver may also include an inner loop. In one preferred embodiment, the transmitter may use turbo coding decoded using an iterative decoder for forward error correction. In one variation, the turbo coding is used on the forward supplemental channel (F-SCH).
摘要:
Downlink schemes are disclosed for a cooperative user equipment (UE) with joint baseband processing. UEs may establish a cooperative UE unit with one or more neighboring UEs, where one of the UEs operates as the primary UE. The participating UEs of the cooperative UE unit determine a downlink transmission scheme for the cooperative transmissions from a serving base station and receive cooperative transmissions of one or more transport blocks from the serving base station according to the downlink transmission scheme. The secondary UEs of the cooperative UE unit generate and transmit cooperative process data to the primary UE, where the cooperative process data is based on the receipt of the cooperative transmissions by the secondary UEs. The primary UE processes its received cooperative transmission along with the cooperative process data to decode the one or more transport blocks. Other aspects and features are also claimed and described.
摘要:
Techniques for supporting peer-to-peer (P2P) communication in a wide area network (WAN) are disclosed. In an aspect, interference coordination between P2P devices engaged in P2P communication and WAN devices engaged in WAN communication may be performed based on a network-controlled architecture. For the network-controlled architecture, P2P devices may detect other P2P devices and/or WAN devices and may send measurements (e.g., for pathloss, interference, etc.) for the detected devices to the WAN (e.g., serving base stations). The WAN may perform resource partitioning and/or association for the P2P devices based on the measurements. Association may include selection of P2P communication or WAN communication for a given P2P device. Resource partitioning may include allocation of resources to a group of P2P devices for P2P communication. The WAN may send the results of association and/or resource partitioning to the P2P devices, which may communicate in accordance with the association and/or resource partitioning results.