摘要:
Techniques for supporting peer-to-peer (P2P) communication in a wide area network (WAN) are disclosed. In an aspect, interference coordination between P2P devices engaged in P2P communication and WAN devices engaged in WAN communication may be performed based on a network-controlled architecture. For the network-controlled architecture, P2P devices may detect other P2P devices and/or WAN devices and may send measurements (e.g., for pathloss, interference, etc.) for the detected devices to the WAN (e.g., serving base stations). The WAN may perform resource partitioning and/or association for the P2P devices based on the measurements. Association may include selection of P2P communication or WAN communication for a given P2P device. Resource partitioning may include allocation of resources to a group of P2P devices for P2P communication. The WAN may send the results of association and/or resource partitioning to the P2P devices, which may communicate in accordance with the association and/or resource partitioning results.
摘要:
Techniques for supporting peer-to-peer (P2P) communication in a wide area network (WAN) are disclosed. In an aspect, interference coordination between P2P devices engaged in P2P communication and WAN devices engaged in WAN communication may be performed based on a network-controlled architecture. For the network-controlled architecture, P2P devices may detect other P2P devices and/or WAN devices and may send measurements (e.g., for pathloss, interference, etc.) for the detected devices to the WAN (e.g., serving base stations). The WAN may perform resource partitioning and/or association for the P2P devices based on the measurements. Association may include selection of P2P communication or WAN communication for a given P2P device. Resource partitioning may include allocation of resources to a group of P2P devices for P2P communication. The WAN may send the results of association and/or resource partitioning to the P2P devices, which may communicate in accordance with the association and/or resource partitioning results.
摘要:
Techniques for performing interference management to support peer-to-peer (P2P) communication in a wide area network (WAN) are described. In an aspect, interference management may be performed in a coordinated manner for/by a set of server nodes, which may include a P2P server and at least one neighbor server node of the P2P server. The P2P server may be a UE communicating peer-to-peer with at least one other UE or P2P client. Interference management may be performed for the set of server nodes to reduce interference to the P2P server and/or the at least one P2P client. In one design, active sets may be determined for UEs. The active set of each UE may include nodes received with sufficient strength by that UE. The set of server nodes may be determined based on the active sets of the P2P server, the at least one P2P client, and possibly other UEs.
摘要:
In a cellular wireless communication system, peer-to-peer (P2P) links between mobile devices are implemented, and controlled using an aggregate utility metric for a group of P2P and cellular links. A mobile node participating in a P2P link, or an eNB, may periodically broadcast an activity level indicator indicating a resource-dependent activity level of the link. The node may control the activity level in response to utility metrics received from members of neighboring P2P links to maximize an aggregate utility of the link and the neighboring P2P links sharing at least a subset of resources of a common frequency spectrum. Formation or termination of P2P links may be controlled in response to comparing a calculated achievable utility value to a current utility value of a link, and taking action calculated to maximize the aggregate utility value.
摘要:
Techniques for performing interference management to support peer-to-peer (P2P) communication in a wide area network (WAN) are described. In an aspect, interference management may be performed in a coordinated manner for/by a set of server nodes, which may include a P2P server and at least one neighbor server node of the P2P server. The P2P server may be a UE communicating peer-to-peer with at least one other UE or P2P client. Interference management may be performed for the set of server nodes to reduce interference to the P2P server and/or the at least one P2P client. In one design, active sets may be determined for UEs. The active set of each UE may include nodes received with sufficient strength by that UE. The set of server nodes may be determined based on the active sets of the P2P server, the at least one P2P client, and possibly other UEs.
摘要:
Techniques for determining resources to use for peer-to-peer (P2P) communication are disclosed. In an aspect, a network entity may receive feedback information (e.g., resource usage information and/or channel state information) from P2P devices and may perform resource partitioning based on the feedback information to allocate some of the available resources for P2P communication. The allocated resources may observe little or no interference from devices engaged in wide area network (WAN) communication. In another aspect, P2P groups may perform resource negotiation via a WAN connection (e.g., with little or no involvement by the WAN) to assign the allocated resources to different P2P groups. In yet another aspect, a device may autonomously determine whether to communicate with another device directly or via a WAN, e.g., whether to initiate P2P communication with another device and whether to terminate P2P communication. In yet another aspect, a network entity may participate in resource negotiation by P2P devices.
摘要:
Techniques for determining resources to use for peer-to-peer (P2P) communication are disclosed. In an aspect, a network entity may receive feedback information (e.g., resource usage information and/or channel state information) from P2P devices and may perform resource partitioning based on the feedback information to allocate some of the available resources for P2P communication. The allocated resources may observe little or no interference from devices engaged in wide area network (WAN) communication. In another aspect, P2P groups may perform resource negotiation via a WAN connection (e.g., with little or no involvement by the WAN) to assign the allocated resources to different P2P groups. In yet another aspect, a device may autonomously determine whether to communicate with another device directly or via a WAN, e.g., whether to initiate P2P communication with another device and whether to terminate P2P communication. In yet another aspect, a network entity may participate in resource negotiation by P2P devices.
摘要:
Certain aspects of the present disclosure provide methods and apparatus for subframe muting and/or discontinuous reception (DRX) mode related to sleep mode for user equipment (UE) relays. One method generally includes measuring, at a UE functioning as a relay (i.e., a UE relay), signals of one or more other UEs functioning as relays during one or more particular subframes and reporting the measurements of the signals to an apparatus. Another method generally includes determining, at a first UE functioning as a relay, that no UEs are being served by the first UE; based on the determination, increasing an interval between broadcast signals; and transmitting the broadcast signals according to the increased interval.
摘要:
Certain aspects of the present disclosure provide methods and apparatus related to various considerations for using systems comprising user equipment (UE) relays. One method generally includes receiving, at a UE functioning as a relay, data from a first apparatus; and relaying the received data to a second apparatus, wherein the relaying does not involve interpreting or altering security features of the received data.
摘要:
Techniques for performing peer discovery in a wireless network are described. A device may perform peer discovery to detect and identify other devices of interest. In an aspect, the device may perform peer discovery based on a hybrid mode that includes autonomous peer discovery and network-assisted peer discovery. In another aspect, the device may perform peer discovery based on a push mode and a pull mode. For the push mode, the device may occasionally transmit and/or receive a peer detection signal. For the pull mode, the device may transmit and/or receive a peer discovery request when triggered. In yet another aspect, the device may perform event-triggered peer discovery (e.g., for the pull mode). In yet another aspect, the device may perform peer discovery using both a downlink spectrum and an uplink spectrum. In yet another aspect, the device may transmit a peer detection signal in a manner to improve detection and/or increase payload.