Abstract:
There is provided a stage circuit capable of minimizing a mounting area. The stage circuit includes: an output unit configured to supply a voltage of a first node, an i-th (i is a natural number) carry signal, and to supply an i-th scan signal in response to the voltage of the first node, a voltage of a second node, and a first clock signal, a controller configured to control the voltage of the second node in response to the first clock signal; a pull-up unit configured to control the voltage of the first node in response to a carry signal of a previous stage and a voltage of a first node of the previous stage, and a pull-down unit configured to control the voltage of the first node in response to the voltage of the second node and a carry signal of a next stage.
Abstract:
A thin film transistor array panel, including: a first insulating substrate; a gate line disposed on the first insulating substrate and including a gate electrode; a semiconductor layer disposed on the gate electrode; a data conductor layer disposed on the semiconductor layer, and including a data line crossing the gate line, a source electrode connected to the data line and exposing at least a part of the semiconductor layer, and a drain electrode facing the source electrode; a capping layer disposed on the data conductor layer, the semiconductor layer exposed between the source electrode and the drain electrode, and the entire surface of the first insulating substrate; and a first passivation layer disposed on the capping layer. The capping layer and the semiconductor layer include the same material.
Abstract:
A pixel of display device includes a light emitting element, a first transistor coupled between first power source and a second node and having a gate electrode connected to a first node N1, and the first transistor being configured to control a driving current supplied to the light emitting element in response to a voltage of the first node, a first capacitor including one electrode connected to the first node and another electrode connected to a third node, a second transistor coupled between the third node and a data line, a third transistor coupled between the first node and the second node, a fourth transistor coupled between the first node and an initialization power source, a fifth transistor coupled between a reference power source and the third node, and an eighth transistor coupled between a fourth node and an anode initialization power source.
Abstract:
A light emitting diode display device includes: a pixel circuit; a data line connected to the pixel circuit to transmit a data voltage; an anode on the pixel circuit and the data line; an emission layer on the anode; and a cathode on the emission layer. The anode includes a first anode and a second anode, and the data line extends across the first anode and the second anode.
Abstract:
A pixel may include: a light emitting element; a first transistor connected between a first node electrically connected to a first driving power source and a second node electrically connected to an anode electrode of the light emitting element, the first transistor to control a driving current; a second transistor connected between a data line and the first node; a third transistor connected between the second node and a third node connected to a gate of the first transistor; a fourth transistor connected between the third node and a first initialization power source; a fifth transistor connected between a second initialization power source and the anode electrode of the light emitting element, the fifth transistor being turned on by a scan signal provided to a scan line; and a boosting capacitor connected between the scan line and the third node.
Abstract:
A pixel includes: a light emitting element; a first transistor connected between a first node electrically connected to a first driving power source and a second node electrically connected to an anode electrode of the light emitting element, the first transistor to control a driving current; a second transistor connected between a data line and the first node; a third transistor connected between the second node and a third node connected to a gate of the first transistor; a fourth transistor connected between the third node and a first initialization power source; a fifth transistor connected between a second initialization power source and the anode electrode of the light emitting element, the fifth transistor being turned on by a scan signal provided to a scan line; and a boosting capacitor connected between the scan line and the third node.
Abstract:
A display device includes a substrate including a display area and a non-display area around the display area; a transistor on the substrate; an insulating layer on the transistor; a power voltage line on the insulating layer and transferring a power voltage; a data line on the insulating layer and transferring a data voltage; and an auxiliary wire between the substrate and the power voltage line in the display area. The auxiliary wire includes a portion overlapping the power voltage line and a portion overlapping the data line in a plan view and is electrically connected to the power voltage line.
Abstract:
A display device including: a substrate; an active layer disposed on the substrate and including active patterns; a first conductive layer disposed on the active layer; a second conductive layer disposed on the first conductive layer and including a data line; a third conductive layer disposed on the second conductive layer; and a light-emitting element disposed on the third conductive layer, wherein the first conductive layer includes a scan line, a first voltage line, and a second voltage line, the third conductive layer includes a third voltage line connected to the first voltage line and a fourth voltage line connected to the second voltage line, the first voltage line and the second voltage line extend in a first direction, the third voltage line and the fourth voltage line extend in a second direction, and the third voltage line and the fourth voltage line are alternately arranged in the first direction.
Abstract:
A pixel including: a light emitting element; a first transistor connected between a first power source and a second node; a first capacitor connected to a first node or a second node and a third node; a second transistor between the third node and a data line, the second transistor turned on by a first scan signal; a third transistor between the first and second nodes, the third transistor turned on by a second scan signal; a fifth transistor between the first power source and the first transistor, the fifth transistor turned on by a first emission control signal; a sixth transistor between the second node and the light emitting element, the sixth transistor turned on by a second emission control signal; and an eighth transistor between the second node and a second emission control line, the eighth transistor turned on by a fourth scan signal.
Abstract:
A scan driver includes stages for outputting scan signals. An nth stage includes: a first driving controller for controlling a voltage of a first node and a voltage of a second node in response to a previous carry signal; a second driving controller for controlling a voltage of a first driving node, based on a sensing-on signal, a next carry signal, the voltage of a first power source, the voltage of the first node, and a voltage of a sampling node, and controlling a voltage of a second driving node, based on the voltage of the sampling node and a sensing clock signal; an output buffer for outputting a carry signal and the scan signal; and a connection controller for electrically coupling the first node and the first driving node and electrically coupling the second node and the second driving node, in response to a display-on signal.