Abstract:
There are provided a compound represented by the following Chemical Formula 1, a photosensitive resin composition for a color filter comprising the same, and a color filter manufactured using the photosensitive resin composition for a color filter. (in Chemical Formula 1, each substituent is as defined in the specification.)
Abstract:
A manufacturing method of a liquid crystal display includes forming display pixels which display an image and dummy pixels which do not display the image on a lower substrate including a display area and a non-display area positioned in at least one side outside the display area, coating a light blocking member material layer on a first dead space area adjacent to the display area and having a dummy area where the dummy pixels are positioned, a second dead space area adjacent to the first dead space area, and a third dead space area adjacent to the second dead space area in the non-display area, and forming first to third light blocking members through exposure by using an optical mask in which at least two or more halftone regions and a full-tone region are mixed.
Abstract:
A liquid crystal display includes: a first substrate and a second substrate facing the first substrate; a column spacer disposed on the first substrate; a light blocking member disposed on the second substrate; and a liquid crystal layer disposed between the first substrate and the second substrate. The light blocking member includes a dome shaped portion having a concave surface.
Abstract:
Provided is an LCD device including a first substrate, a second substrate, a liquid crystal layer, a main spacer, and a supplementary spacer. The liquid crystal layer is interposed between the first and second substrates. The main spacer makes contact with the first and second substrates. The supplementary spacer makes contact with one of the first and second substrates and is spaced apart from the other. A first area ratio defined by dividing the area of a first top surface by that of a first bottom surface of the main spacer may be smaller than a second area ratio defined by dividing the area of a second top surface by that of a second bottom surface of the supplementary spacer.
Abstract:
A manufacturing method of a liquid crystal display includes: forming a thin film transistor on a first substrate; forming a color filter on the thin film transistor; forming a pixel electrode on the color filter; and forming a light blocking member including a column spacer protruded from the light blocking member on the color filter. The forming the light blocking member uses a mask including a first region, a second region, and a third region. The first region passes light generated from a light exposer, the second region includes a blocking filter layer which selectively passes the light generated from the light exposer, and the third region blocks the light generated from the light exposer.
Abstract:
A liquid crystal display device includes a first substrate, a second substrate, and a liquid crystal layer disposed between the first substrate and the second substrate. The second substrate includes a buffer layer, and the buffer layer includes a recessed portion. A spacer is disposed between the first substrate and the second substrate, such that a portion of the spacer is extended into the recessed portion. A bottom surface of the recessed portion contacts an upper surface of the spacer. A shortest line crossing a center of the bottom surface of the recessed portion is longer than a longest line crossing a center of the upper surface of the spacer, by about 14 micrometers to about 20 micrometers.
Abstract:
A photoresist composition for manufacturing a color filter, the photoresist composition includes a first red colorant and a yellow colorant represented by Chemical Formula 1, wherein R1 and R2 each independently represent a C1 to C10 alkyl group, wherein A1, A2, A3, and A4 each independently represent a C1 to C10 alkyl group, —CN, —PO3H2, —C(O)OH, or a hydrogen atom, m is an integer of 1 to 10, and optionally wherein at least one —CH2— of R1 and R2 if present is independently replaced with —O—, —C(O)—, —C(O)O—, or —OC(O)—.