Abstract:
Provided is a backlight unit having high optical efficiency and a holographic display device including the backlight unit. The backlight unit includes a light source unit configured to provide a light beam, a first beam expander configured to mix the light beam provided from the light source unit, expand the light beam in a first direction, and output the mixed and expanded light beam as white light, and a second beam expander configured to expand the white light output from the first beam expander in a second direction perpendicular to the first direction and output the expanded white light as surface light.
Abstract:
A directional backlight and a 3D image display apparatus including the directional backlight are provided. The directional backlight includes a light guide plate guiding light emitted from a light source; a diffractive device configured to adjust the direction of light exiting the light guide plate; and an aperture adjusting layer including a plurality of apertures. The aperture adjusting layer may adjust the optical output efficiency of the diffractive device.
Abstract:
An apparatus and a method for displaying holographic 3D image are provided. The method includes generating, by a controller, a hologram signal to generate multiple identical hologram images which are shifted with respect to one another by a predetermined distance and overlapped on one another, and modulating, by a spatially light modulator (SLM), light incident on the SLM based on the hologram signal.
Abstract:
A backlight unit and a holographic display apparatus that includes a backlight unit are provided. The backlight unit includes a light source, a first light guide plate for guiding a light beam emitted by the light source in a first direction, a second light guide plate for guiding the light beam incident via the first light guide plate in a second direction, and an output/input coupler that is disposed between the first light guide plate and the second light guide plate.
Abstract:
An acousto-optic element array includes: acousto-optic elements each including an acousto-optic generator, a light supply, and a wave transducer; a gate driver that selects an acousto-optic element to be driven from among the acousto-optic elements; an electrical data driver that is connected to an electrical wire and transmits electrical data to an electro-optic modulator configured to control the acousto-optic generator of the selected acousto-optic element; and a wave data driver that is connected to a waveguide and transmits wave data to the wave transducer of the selected acousto-optic element.
Abstract:
Provided is a micro-lens capable of changing a focal length. The micro-lens includes a plurality of electrodes, and an electrowetting liquid layer that is separable from the electrodes and that has a focal length that is controlled by a voltage applied to the electrodes.
Abstract:
A method of generating a hologram includes receiving three-dimensional (3D) image data, dividing 3D image data into data groups which are independent from one another, by a first processor; calculating, from at least one of the data groups, hologram values to be displayed at respective positions on a hologram plane, by the first processor; calculating, from at least another one of the data groups, hologram values to be displayed at the respective positions on the hologram plane by a second processor, and summing the calculated hologram values for each of the respective positions on the hologram plane, by the first processor or the second processor, or by the first processor and the second processor in parallel.
Abstract:
A holographic display apparatus includes: a light source configured to emit light; a spatial light modulator configured to sequentially generate hologram patterns for modulating the light and to sequentially reproduce frames of hologram images based on the hologram patterns; and a controller configured to provide hologram data signals to the spatial light modulator, the hologram data signals being used to sequentially generate the hologram patterns. The controller is configured to further provide, to the spatial light modulator, diffraction pattern data signals for forming periodic diffraction patterns for adjusting locations of the hologram images to be reproduced on a hologram image plane, the diffraction pattern data signals being configured to move the periodic diffraction patterns on the spatial light modulator along a predetermined direction for each of the frames.
Abstract:
A two-dimensional (2D)/three-dimensional (3D) switchable backlight unit and an image display apparatus using the 2D/3D switchable backlight unit are provided. The 2D/3D switchable backlight unit includes: a light source unit; a first light guide plate, within which light from the light source unit is totally internally reflected; and a plurality of refraction patterns, each having a trapezoidal form. The light source unit may include a first light source and a second light source.
Abstract:
A changeable liquid lens array and a method of manufacturing the same. The changeable liquid lens array includes a substrate, a plurality of partition walls arrayed on the substrate and having a fluid travel path, cells defined by the plurality of partition walls, a first fluid comprised in the cells, a second fluid arranged on the first fluid, a first electrode arranged on at least one side surface of each of the partition walls, and a second electrode disposed to be separate from the partition walls. A shape of shape of an interface between the first fluid and the second fluid changes based on a voltage that is applied to the first electrode and the second electrode.