Abstract:
Technology is described for methods and systems for a diffractive optic device (525) for holographic projection. The diffractive optic device can include a lens (535) configured to convey a hologram. The lens (535) further comprises a patterned material (510) formed with an array of cells having a non-planar arrangement of cell heights extending from a surface of the patterned material. The lens further optionally comprises a filling material (530) to fill gaps on both surfaces of the patterned material.
Abstract:
Some embodiments are directed to a technique having an off-axis interferometric geometry that is capable of spatially multiplexing at least six complex wavefronts, while using the same number of camera pixels typically needed for a single off-axis hologram encoding a single complex wavefront. Each of the at least six parallel complex wavefronts is encoded into an off-axis hologram with a different fringe orientation, and all complex wavefronts can be fully reconstructed. This technique is especially useful for highly dynamic samples, as it allows the acquisition of at least six complex wavefronts simultaneously, optimizing the amount of information that can be acquired in a single camera exposure. The off-axis multiplexing holographic system of some embodiments provide an off-axis holography modality that is more camera spatial bandwidth efficient than on-axis holography. Moreover, the off-axis interferometric system allows simple simultaneous acquisition of at least six holographic channels, making it attractive for imaging dynamics.
Abstract:
Systems, devices, and methods for eyebox expansion by exit pupil replication in scanning laser-based wearable heads-up displays (“WHUDs”) are described. The WHUDs described herein each include a scanning laser projector (“SLP”), a holographic combiner, and an optical replicator positioned in the optical path therebetween. For each light signal generated by the SLP, the optical replicator receives the light signal and redirects each one of N>1 instances of the light signal towards the holographic combiner effectively from a respective one of N spatially-separated virtual positions for the SLP. The holographic combiner converges each one of the N instances of the light signal to a respective one of N spatially-separated exit pupils at the eye of the user. In this way, multiple instances of the exit pupil are distributed over the area of the eye and the eyebox of the WHUD is expanded.
Abstract:
A generation method of a digital hologram includes steps of emitting coherent light from a coherent light source, imaging a hologram that is an interference pattern of an object beam and a reference beam due to the emission light from the light source, and setting a plurality of wavelengths of the illumination light that generates the hologram detected by the detector, and wherein the plurality of wavelength are specified by the wavelength setting step based on a magnification percentage X of a conjugate image set up by a user not to disturb visibility of an image when a real image and the conjugate image reconstructed by a predetermined calculation means relative to structures of observation targets are superimposed to a corresponding real image so that a shortest wavelength λmin and a longest wavelength λmax satisfy the expression λmax/λmin≧(1/X+1).
Abstract:
A digital holographic apparatus includes a first hologram generating unit that generates a first hologram by causing first object light in a first observation direction to interfere with first reference light, the first object light being generated by irradiating an observation object with light having a first wavelength, the first reference light being derived from the light having the first wavelength; a second hologram generating unit that generates a second hologram by causing second object light in a second observation direction that differs from the first observation direction to interfere with second reference light, the second object light being generated by irradiating the observation object with light having a second wavelength, the second reference light being derived from the light having the second wavelength; a first image capturing unit that captures the first hologram; and a second image capturing unit that captures the second hologram.
Abstract:
A volume holographic imaging system, apparatus, and/or method enables the projection of a two-dimensional (2D) slice of a four-dimensional (4D) probing object. A 4D probing source object is illuminated to emit or scatter an optical field. A holographic element having one or more recorded holograms receives and diffracts the optical field into a diffracted plane beam having spectral information. A 4-f telecentric relay system includes a pupil filter on the relayed conjugate plane of the volume hologram and images the pupil of the volume hologram onto the front focal plane of the collector lens. A collector lens focuses the diffracted plane beam to a 2D slice of the 4D probing source object. The focused 2D slice is projected onto a 2D imaging plane. The holographic element may have multiple multiplexed holograms that are arranged to diffract light from the corresponding slice of the 4D probing source object.
Abstract:
A phase converting device capable of use over a broad wavelength range, which may be used for optical beam transformations and combining, conversion of resonator and waveguide modes, correction of aberrations in optical systems, and selection of photons with specific phase profile. This provides significant advantages in high power laser systems. Large-mode-area fibers can be used to provide higher incident powers than can be achieved by single-mode fibers, reducing the number of elements in a system necessary to achieve the desired output. The profiles of these LMA fiber modes can then be converted from the undesired modes into the desired mode while combing their total power into a single beam.
Abstract:
An instrument panel for a motor vehicle is provided. The instrument panel includes an instrument panel surface and a plurality of indicia disposed on the instrument panel surface. The plurality of indicia comprises holographic ink.
Abstract:
An optical device including a hologram recording medium that can reproduce an image of a reference member and an irradiation unit that emits a coherent light beam to the optical device. The irradiation unit includes a light source for emitting a coherent light beam and a scanning device capable of adjusting a reflection angle of the coherent light beam emitted from the light source and that makes a reflected coherent light beam scan the hologram recording medium. The light source has light sources for emitting coherent light beams having different wavelength ranges. The hologram recording medium has a plurality of recording areas to be scanned with a plurality of coherent light beams reflected by the scanning device, respectively. Each of the plurality of recording areas has an interference fringe that diffracts a coherent light beam of the corresponding wavelength range.
Abstract:
Disclosed herein are systems and techniques related to virtual image projection systems. In some examples, the system may include a scanning mirror arrangement for receiving a light beam and reflecting the light beam to a projection surface and a dynamic optical lens for focusing the light beam at a focal plane so that the light beam reflected from the projection surface is collimated or diverging enabling the projected image to be perceived as a virtual image.