Abstract:
An optical apparatus includes a touch substrate; a waveguide layer arranged on the touch substrate, the waveguide layer including a plurality of waveguides; an optical output structure arranged on the waveguide layer and configured to output light propagating in the plurality of waveguides at touched locations on the touch substrate; a gap layer arranged to provide a predetermined gap between the waveguide layer and the optical output structure; and an optical system, which projects light output by the optical output structure.
Abstract:
An illumination unit is provided including a coherent light source; a projection optical element which focuses a light beam emitted from the coherent light source onto a focal plane; and a holographic optical element interposed between the coherent light source and the projection optical element, and having an interference pattern formed thereon. The holographic optical element diffracts the light beam emitted from the coherent light source and emits the diffracted light to the projection optical element. Here, the interference pattern on the holographic optical element may have information that diffracts the light beam and thereby cancels a diffraction of the light beam due to an aberration of the projection optical element.
Abstract:
Provided is an optically addressable spatial light modulator (OASLM)-based holographic display and a method of operating the same. The display includes an addressing unit including a light source unit emitting a plurality of recording beams, a driving mirror array including driving mirrors that each reflect a recording beam incident thereon, and a mirror member array including mirror members that each obliquely reflect a recording beam incident thereon, in which each of the driving mirrors corresponds to one of the mirror members. The recording beams, which are transmitted by the addressing unit, are focused onto the OASLM by micro lenses of a lenslet array. The OASLM is optically addressed by the recording beams focused by the micro lenses of the lenslet array and thus modulates and diffracts a reproduction beam, incident thereon from a reproduction beam providing unit, and thus a holographic image is reproduced.
Abstract:
Provided are a complex spatial light modulator and a three-dimensional (3D) image display including the same. The complex spatial light modulator includes a spatial light modulator configured to modulate a phase of a light beam, a prism array disposed after the spatial light modulator and including an array of prism portions each having a first prism surface and a second prism surface, and a diffractive device configured to diffract a light beam that has passed through the prism array. Accordingly, both the phase and amplitude of the light beam may be modulated.
Abstract:
Provided are an optically addressable spatial light modulator (OASLM) divided into a plurality of segments, and an apparatus and method for displaying a holographic three-dimensional (3D) image using the OASLM. The holographic 3D image display apparatus includes a first light source which emits a write beam, an electric addressable spatial light modulator (EASLM) which modulates the write beam emitted from the first light source according to hologram information regarding a 3D image, a second light source which emits a read beam, an OASLM which receives the write beam modulated by the EASLM and modulates the read beam emitted from the second light source according to hologram information included in the modulated write beam, a scanning optical unit which projects the write beam modulated by the EASLM onto the OASLM, and a Fourier lens which focuses the read beam modulated by the OASLM onto a predetermined space to form the 3D image.
Abstract:
A changeable liquid lens array and a method of manufacturing the same. The changeable liquid lens array includes a substrate, a plurality of partition walls arrayed on the substrate and having a fluid travel path, cells defined by the plurality of partition walls, a first fluid comprised in the cells, a second fluid arranged on the first fluid, a first electrode arranged on at least one side surface of each of the partition walls, and a second electrode disposed to be separate from the partition walls. A shape of shape of an interface between the first fluid and the second fluid changes based on a voltage that is applied to the first electrode and the second electrode.
Abstract:
A complex spatial light modulator for modulating a phase and amplitude of a light beam and a 3-dimensional (3D) display including the same are provided. The complex spatial light modulator includes a spatial light modulator modulating a phase of a light beam, a lenticular lens array disposed next to the spatial light modulator, and a volume holographic lens array spaced apart from the lenticular lens array and allowing light beams output from the lenticular lens array to be superimposed and to interfere with each other, and so that the phase and an amplitude of the light beam are simultaneously modulated.
Abstract:
An apparatus for displaying a holographic three-dimensional (3D) image is provided. The apparatus includes: a holographic pattern generation unit; a spatial optical modulation device including a phase transition layer formed of a phase transition material, a phase of which is changed by a temperature. A holographic pattern generated by the holographic pattern generation unit is optically addressed on the spatial optical modulation device. The apparatus also includes a heat source for applying heat to the phase transition layer; a control unit for controlling the heat source according to holographic pattern information generated by the holographic pattern generation unit; and a reproduction light source for irradiating light for image reproduction onto the spatial optical modulation device.
Abstract:
Provided are examples of light modulators and optical apparatuses that may include the light modulators. A light modulator may include a plasmonic nano-antenna and an element for changing plasmon resonance characteristics of the plasmonic nano-antenna. The plasmon resonance characteristics of the plasmonic nano-antenna may be changed due to a change in refractive index of the element, and thus light may be modulated.
Abstract:
A surface light source device is provided. The surface light source device includes a light source, a beam splitter configured to split a light irradiated from the light source into a plurality of light beams each having a different path, a diffusion unit configured to diffuse the plurality of light beams split by the beam splitter into a surface light, and a collimating unit configured to arrange the plurality of light beams diffused from the diffusion unit in one direction.