Abstract:
An image sensor includes a pixel array having a Bayer pattern structure including a first pixel row in which first pixels and second pixels are alternately provided and a second pixel row in which additional ones of the second pixels and third pixels are alternately provided, a first element to control light of a first wavelength band to travel in directions toward left and right sides of the first element and to control light of a second wavelength band of the incident light to travel in a direction directly under the first element, and a second element to control light of a third wavelength band to travel in the directions toward the left and right sides of the second element and to control the light of the second wavelength band to travel in a direction directly under the second element.
Abstract:
A color separation element array includes a plurality of color separation elements arranged in two dimensions and separating an incident light according to a wavelength such that, of the incident light, a light of a first wavelength is directed to a first direction and a light of a second wavelength that is different from the first wavelength is directed to a second direction that is different from the first direction, in which each of the plurality of color separation elements includes a first element and a second element that are sequentially arranged according to a traveling direction of the incident light, and the first element and the second element of at least one of the plurality of color separation elements are shifted with respect to each other.
Abstract:
A stacked type image sensor including color separation elements, and an image pickup apparatus including the stacked type image sensor, are provided. The stacked type image sensor includes a first light sensing layer including first pixels configured to absorb and detect light of a first wavelength band and transmit light of a second wavelength band and a third wavelength band, and a second light sensing layer disposed to face the first light sensing layer, the second light sensing layer including second pixels configured to detect light of the second wavelength band and third pixels configured to detect light of the third wavelength band. The color separation elements are disposed between the first light sensing layer and the second light sensing layer, and are configured to direct the light of the second wavelength band toward the second pixels, and direct the light of the third wavelength band toward the third pixels.
Abstract:
Provided is a tunable electro-optic filter including a reflective structure including a first reflective layer including a first pattern layer having a first meta-surface structure disposed on a first side of the liquid crystal layer and a second reflective layer including a second pattern layer having a second meta-surface structure disposed on a second side of the liquid crystal layer. Each of the first meta-surface structure and the second meta-surface structure includes multiple dielectric materials which are alternately stacked, and a thickness of each dielectric material gradually increases. Alternately, the tunable electro-optic filter may include a pattern layer having a meta-surface structure disposed on at least a side of the liquid crystal layer.
Abstract:
Color separation devices, and image sensors including the color separation devices and color filters, include at least two transparent bars that face each other with a gap therebetween. Mutually-facing surfaces of the at least two transparent bars are separated from each other by the gap such that the at least two transparent bars allow diffraction of visible light passing therebetween. The at least two transparent bars have a refractive index greater than a refractive index of a surrounding medium.
Abstract:
An image sensor including a color filter isolation layer and a method of manufacturing the image sensor. The image sensor includes a plurality of color filters that transmit light of a predetermined wavelength band to a light sensing layer. The image sensor also includes an isolation layer disposed between adjacent ones of the plurality of color filters. The isolation layer is formed of a material having a lower refractive index than a refractive index of the color filters, thus totally internally reflecting light incident on the isolation layer from one of the plurality of color filters.
Abstract:
A varifocal lens includes a first phase plate and a second phase plate which are rotatable relative to each other about an optical axis. The first phase plate includes a plurality of first phase conversion elements, the second phase plate includes a plurality of second phase conversion elements, and the plurality of first phase conversion elements and the plurality of second phase conversion elements are arranged so that light transmitted through the first phase plate and the second phase plate is focused on different positions on the optical axis depending on a relative rotational displacement between the first phase plate and the second phase plate.
Abstract:
An image sensor and a method of manufacturing the same are provided. The image sensor includes a photoelectric conversion layer; a color filter disposed on the photoelectric conversion layer; a low refractive index layer disposed on the color filter; a beam splitter disposed within the low refractive index layer; and a lens layer disposed on the low refractive index layer and covering the beam splitter. The beam splitter extends in a diagonal direction of a pixel area of the color filter, in a plan view.
Abstract:
A color filter array may include a plurality of color filters arranged two-dimensionally and configured to allow light of different wavelengths to pass therethrough. Each of the plurality of color filters includes at least one Mie resonance particle and a transparent dielectric surrounding the at least one Mie resonance particle.
Abstract:
The electric pen device includes an optical system including a lens and an image sensor configured to convert an image signal of light that has passed through the optical system to an electrical signal. The electric pen device includes a control board configured to interact with an electronic device and a communication module configured to communicate by wire or wirelessly with the electronic device, so that an image or a picture taken by a camera is confirmed and an optical zoom is controlled from the external electronic device.