Abstract:
A high efficiency switching power supply including an analog front end, a battery control circuitry portion, a display and equalization circuitry portion, field effect transistor (FET) drivers, an isolated power supply transformer circuitry (and three associated sets of tap circuitry), microcontroller circuitry, oscillator circuitry, overcharge protection circuitry, programmable logic circuitry portion, and a zero current predictor. Overbiasing of the FET power supply switches, and/or other various circuitry features disclosed herein, helps achieve electrical power efficiencies of preferably greater than 95%, even more preferably greater than 98% and even more preferably greater than 99%. Preferably, the switching power supply has one or more of the following: (1) high electrical power efficiency (>95%. >98%, >99%); (2) overbiasing of a gate of a power supply switch; (3) a power supply switch with a low gate capacitance ratio; (4) multiple modes of operation; and (5) current prediction wherein an inductor voltage is used to control a constant current capacitor whose voltage indicates the level of current in the inductor.
Abstract:
The invention basically comprises the addition of a small amount of nanometer sized carbon tubes or fibres grown by high temperature vapour deposition to a meso-phase graphite mixture used for a negative electrode (anode) for a lithium battery. These are referred to herein as “carbon nano-fibres”. According to one embodiment of the present invention, in an anode for a lithium battery having a conductive substrate coated with a pressed compact of spherical graphite and an ion-conducting polymeric binder, an amount of from 1.5 to 12% by weight of carbon nano-fibres is added. The carbon nano-fibres may have an average diameter of around 0.2 μm (200×10−9 m) a length of from 10 to 20 mm and an inner core diameter of from 65-70 nm. The spherical graphite may be meso-phase graphite and more preferably, the carbon nano-fibres are included in amount of from 2 to 9% by weight.
Abstract:
An electrical energy storage device for storing electrical energy and supplying the electrical energy to a driving motor at different power levels is disclosed. The electrical storage device has an energy battery connected to a power battery. The energy battery has a higher energy density than the power battery. However, the power battery can provide electrical power to the electrical motor at different power rates, thereby ensuring that the motor has sufficient power and current when needed. The power battery is continuously recharged by the energy storage battery. In this way, the power battery temporarily stores electrical energy received from the energy battery and provides the electrical energy at the different power rates as required by the motor. The energy storage device can be releasably connected to an external power source in order to recharge both batteries. Both batteries can be recharged independently to optimize the recharging and lifetime characteristics of the batteries.