Abstract:
A waveguide has an input end near a top of a slider coupled to receive light from an energy source. The waveguide delivers the light at an output end of the waveguide near a bottom of the slider. The apparatus includes light blocking members on respective first and second cross track sides of the waveguide. The light blocking members are configured to block stray light away from a light path. The light blocking members are at a location along a length of the waveguide between the top and the bottom of the slider. Confinement of light within the waveguide is near a maximum at the location.
Abstract:
A method is provided for characterizing the peg region of a near-field transducer incorporated into a write head of a HAMR magnetic recorder. The method includes providing excitation radiation to one or more near-field transducers. The near-field transducers include an enlarged disk region and a peg region at least partially in contact with the enlarged disk region. The method further includes filtering output radiation from the near-field transducers by passing a portion of photoluminescent radiation emitted by the near-field transducers in response to the excitation radiation and substantially blocking the excitation radiation transmitted by the near-field transducers. The method also includes detecting the portion of photoluminescent radiation and characterizing the peg region of at least one of the plurality of near-field transducers.
Abstract:
A method is provided for characterizing the peg region of a near-field transducer incorporated into a write head of a HAMR magnetic recorder. The method includes providing excitation radiation to one or more near-field transducers. The near-field transducers include an enlarged disk region and a peg region at least partially in contact with the enlarged disk region. The method further includes filtering output radiation from the near-field transducers by passing a portion of photoluminescent radiation emitted by the near-field transducers in response to the excitation radiation and substantially blocking the excitation radiation transmitted by the near-field transducers. The method also includes detecting the portion of photoluminescent radiation and characterizing the peg region of at least one of the plurality of near-field transducers.
Abstract:
A light delivery system in a slider includes a channel waveguide, a mode-index refractive surface, a solid immersion mirror, and a near field transducer. The mode-index refractive surface shapes the angular spectrum of the light on its path to the solid immersion mirror in a manner so as to change the distribution of light energy focused on to the near field transducer.
Abstract:
A waveguide including a top cladding layer, the top cladding layer including a material having an index of refraction, n1; an assistant layer, the assistant layer positioned adjacent the top cladding layer, the assistant layer including a material having an index of refraction, n2; a core layer, the core layer positioned adjacent the assistant layer, the core layer including a material having an index of refraction, n3; and a bottom cladding layer, the bottom cladding layer positioned adjacent the core layer, the bottom cladding layer including a material having an index of refraction, n4, wherein n1 is less than both n2 and n3, n3 is greater than n1 and n4, and n4 is less than n3 and n2.
Abstract:
An apparatus includes a waveguide configured to deliver light to a transducer region. The apparatus also includes a plasmonic transducer that has two metal elements configured as side-by-side plates on a substrate-parallel plane with a gap therebetween. The gap is disposed along the substrate-parallel plane and has an input end disposed proximate the transducer region and an output end. The transducer is configured to provide a surface plasmon-enhanced near-field radiation pattern proximate the output end in response to the light received by the waveguide.
Abstract:
A light delivery system in a slider includes a channel waveguide, a solid immersion mirror, a near field transducer, and a planar waveguide assembly. The solid immersion mirror focuses light to the near field transducer. In one implementation, the slider includes a first reflective element and a second reflective element formed in the slider to induce an offset between a light source and the near field transducer. The reflective elements redirect light received from a light source between the reflective elements to a focusing element (e.g., a solid immersion mirror) focused on a near field transducer. The reflective elements translate the light in accordance with the offset between the light source and the near field transducer.
Abstract:
An apparatus comprises a slider configured for heat-assisted magnetic recording comprising an air bearing surface (ABS). The slider comprises a write pole at or near the ABS, and a near-field transducer (NFT) at or near the ABS and proximate the write pole. A main waveguide is configured to receive light from a laser source and communicate the light to the NFT. An optical power sensor comprises a tap waveguide optically coupled to the main waveguide and comprising a first end and an opposing second end. The optical power sensor also comprises a bolometer optically coupled to the tap waveguide and configured to receive a portion of the light extracted from the main waveguide by the tap waveguide.
Abstract:
A write head includes a first surface-plasmonic plate proximate a magnetic pole and recessed from a media-facing surface of the write head. A bottom surface of the first surface-plasmonic plate faces away from the magnetic pole and towards a waveguide core. The first surface-plasmonic plate is formed of a first material having lower-loss in plasmonic coupling than a second material, the second material being more mechanically robust than the first material. A second surface-plasmonic plate is formed of the second material and located on the bottom surface of the first surface-plasmonic plate. A lower edge of the second surface-plasmonic plate extends closer to the media-facing surface than the first surface-plasmonic plate. An upper edge of the second surface-plasmonic plate is slanted in a downtrack direction.
Abstract:
A recording head has a near-field transducer overlapping a core near a media-facing surface of the recording head. The near-field transducer has an enlarged portion formed of a plasmonic material and a peg extending from the enlarged portion. The enlarged portion includes a stacked feature that reduces the emission of a polarization rotated portion of light to a recording medium.