Abstract:
The manipulation of human dendritic cells (DCs) to induce potent anti-tumor immunity remains an essential subject of study. Here we report that the overexpression of CD1d in human DCs can enhance the priming of naïve CD8+ T cells against tumor antigen. We showed that CD1d can be overexpressed in the human DCs using baculoviral vector carrying the CD1d gene. This CD1d-overexpression is functional as demonstrated by the increased expansion of invariant natural killer T (iNKT) cells while using these modified DCs to present α-galactosylceramide (α-GC). Pulsed with tumor antigenic peptide, these CD1d-overexpressing human DCs showed enhanced capability to prime naïve CD8+ T cells. CD1d-overexpressing human DCs also induced a pro-inflammatory cytokine profile that may favor the priming. Moreover, this CD1d-overexpression strategy can be extrapolated to monocyte-derived human DCs. Therefore, our study suggest that overexpression of CD1d in human DCs may provide a novel strategy to enhance DC immunogenicity and the possible translation into human cancer immunotherapy.
Abstract:
A first communication device wirelessly coupled to a second communication device. The first communication device includes a first receiver, a message processor, and a first transmitter. The first receiver is configured to receive first signals corresponding to a first number of communication devices, where the second communication device is one of the communication devices, and is also configured to measure first strengths of the first signals. The message processor is configured to determine that a second number of the communication devices can be processed by the first communication device according to the first strengths measured. The first transmitter is configured to transmit one or more first messages to the second communication device indicating the second number.
Abstract:
A method for acquiring positioning information includes receiving, at a mobile terminal (MT), downlink data in a plurality of downlink slot frames from a serving base station transmitting the downlink data over a first time period generally corresponding to the plurality of downlink slot frames. The MT experiences a relatively silent period during which the serving base station substantially ceases transmission to the mobile terminal during a second time period that defines a transmission power modification period. The MT also receives a preamble broadcasted by various neighbor base stations, the preamble broadcasted by such base stations occurring during a third time period which at least partially overlaps the second time period. The location or position estimate of the MT can be calculated based upon at least the preamble broadcasted by the neighbor base stations.
Abstract:
A method of transmitting subsequent sub-packets in a wireless communication system using a hybrid automatic request (HARQ) technique is disclosed. The method includes receiving feedback information from at least one receiving end, transmitting a transmit packet via at least one overhead channel, wherein the transmit packet includes information on carrier and antenna combination selected for subsequent transmission, and transmitting at least one sub-packet according to the selected carrier and antenna combination.
Abstract:
A base station apparatus is provided. The base station apparatus includes an orthogonal frequency division multiplexed (OFDM) encoder and a time division multiplexer. The OFDM encoder is configured to encode a plurality of data streams into a corresponding plurality of OFDM tones, where one of the corresponding plurality of OFDM tones includes an OFDM preamble tone that indicates a mapping of remaining OFDM tones within the plurality of OFDM tones to one or more of a plurality of mobile stations, and indicates at least one of the plurality of tones addressed to a particular mobile device, and wherein the preamble tone is not fixed to the selected particular mobile device through communication. multiplexes a plurality of streams over a forward link channel for receipt by the plurality of mobile stations, where the corresponding plurality of OFDM tones are encoded as one of the plurality of streams.
Abstract:
The present invention relates to a method for transmitting a signal in a wireless communication system. The method includes channel coding a data stream using a first turbo encoded puncture pattern, and channel coding the data stream using a second turbo encoded puncture pattern. Preferably, the first turbo encoded puncture pattern is a turbo encoded puncture pattern of a first local operator infrastructure (LOI) and the second turbo encoded puncture pattern is a turbo encoded puncture pattern of a second LOI that neighbors the first LOI.
Abstract:
A method for power management in handover between heterogeneous networks comprising: an MIH layer obtains power information and provides it for an MIH user layer; the MIH user layer determines the handover policy according to the power information. In various embodiments of the disclosure, the MIH layer triggers an event so that the MIH user layer can obtain power information, and select a lower-layer network connection automatically according to the current power status, thus implementing handover; the MIH user layer sends a query request to the MIH layer to obtain power consumption parameters from the network, and selects a lower-layer network connection according to the power consumption and the current power status, thus implementing handover and making more accurate and effective decisions in the handover.
Abstract:
A method of providing a location based service to an access terminal in a mobile communication system is provided. The method includes transmitting one or more access probes, each of the one or more access probes including a preamble having a first specific length and transmitted at a first power level, where the preamble is utilized to determine a position of the access terminal.
Abstract:
A method for advance allocation of one or more resources to a frame for a mobile communication terminal comprises transmitting resource allocation data in advance over several frames to allow for additional diversity in providing a mobile with resource allocation data.
Abstract:
A wireless communication system including a receiver and a transmitter. The receiver receives a frame of data, and sends an acknowledgement. The acknowledgement includes a positive acknowledgement (ACK) if the data is successfully decoded or a negative acknowledgement (NAK) if the data is unsuccessfully decoded. The acknowledgement is sent according to timing of an acknowledge mask. The transmitter is wirelessly coupled to the receiver, and receives the acknowledgement according to the acknowledge mask, and sends a response to the receiver according to the acknowledgement. The response includes, if an ACK is received before transmission completes of the frame, the transmitter terminates transmission of the frame; if a NAK is received before transmission completes of the frame, the transmitter continues to send the frame; and if an ACK is not received before a predefined frame early scheduling point, the transmitter retransmits the frame after transmission completes of the frame.