Abstract:
An exemplary TFT array substrate (200) includes a glass substrate (201); a source electrode (215), a channel (212), and a drain electrode (216) formed on the substrate, the channel being between the source electrode and the drain electrode; a gate insulating layer (203) formed on the channel; a gate electrode (214) formed on the gate insulating layer, and corresponding to the channel; and a passivation layer (206) formed on the source electrode, the drain electrode, the passivation layer having a dielectric constant less than that of the gate insulating layer. A width of the gate insulating layer is less than a corresponding width of each of the gate electrode and the channel, and portions of the passivation layer are located adjacent the gate insulating layer between the gate electrode and the channel.
Abstract:
An exemplary liquid crystal display device (3) includes a first substrate (31), a second substrate (32) opposite to the first substrate, and a liquid crystal layer (34) disposed between the first and second substrates. A number of data lines (322) is disposed on the first substrate. A number of photospacers (36) is disposed on one of the first and second substrates, and the photospacer is disposed over a corresponding one of the data lines and at least partly overlies the corresponding data line. The photospacer has a lower dielectric constant than the liquid crystal layer. Thus, the liquid crystal display device has a lower coupling capacitance between the data lines and other elements. This facilitates a reduction crosstalk during operation of the liquid crystal display device, so that the liquid crystal display can provide better quality images.
Abstract:
A thin film transistor (TFT) substrate includes gate lines, data lines intersecting with the gate lines, a plurality of TFTs, pixel electrodes, and a common electrode insulating the gate lines, the data lines, the TFTs, and the pixel electrode. Each pixel electrode is connected to one of the gate lines and one of the data lines via one of the TFTs. A layer stack including an insulating layer and a passivation layer is sandwiched between the pixel electrodes and the common electrode.
Abstract:
An exemplary electro-wetting display (EWD) device includes a plurality of sub-pixel units. Each sub-pixel unit defines two opposite long sides and two opposite short sides. Each sub-pixel unit includes a first substrate, a second substrate facing toward the first substrate, a conductive first liquid and a polar second sandwiched between the first substrate and the second substrate, and an electrode. The first and second liquids are immiscible. The electrode is disposed at a surface of the second substrate facing the first liquid. The electrode defines an opening. A length of the opening as measured parallel to the nearest short side is not less than 0.8 times a length of the nearest short side.
Abstract:
An exemplary repairing method includes providing a substrate having a plurality of conducting lines; detecting a broken position of one of the conducting lines; switching on a nozzle; and forming a copper layer at the broken position on the substrate. The repairing method of the present invention employing a repairing device for performing a chemical vapor deposition (CVD) method to forming the copper layer at a position of the broken defect of one of the conducting lines.
Abstract:
A thin film transistor (TFT) substrate includes gate lines, data lines intersecting with the gate lines, a plurality of TFTs, pixel electrodes, and a common electrode insulating the gate lines, the data lines, the TFTs, and the pixel electrode. Each pixel electrode is connected to one of the gate lines and one of the data lines via one of the TFTs. A layer stack including an insulating layer and a passivation layer is sandwiched between the pixel electrodes and the common electrode.
Abstract:
An exemplary electro-wetting display (EWD) includes a plurality of pixel regions, and each pixel region includes a first substrate; a second substrate opposite to the first substrate; a first conductive liquid disposed between the first and second substrates; a second, colored, non-conductive liquid disposed between the first and second substrates, and the second liquid being immiscible with the first liquid; and an electrode disposed at a surface of the second substrate adjacent to the first substrate. The electrode includes a cutout portion to define a containing space for receiving the second liquid while the pixel region displaying white. The electrode includes an edge corresponding to an edge of the cutout portion, and the edge of the electrode has a shape corresponding to a shape of an edge of the second liquid while being receiving in the containing space.
Abstract:
An exemplary projection display device (2) includes a color light system (20), a light valve (23), and a projecting structure (25). The color light system is configured for providing different color light beams. The light valve is configured for modulating the color light beams respectively. The projecting structure is configured for projecting the modulated color light beams passing through from the light valve.
Abstract:
An exemplary damascene interconnect structure includes a substrate (20), a first dielectric layer (21) on the substrate, a plurality of trenches (27) formed in the first dielectric layer, and a plurality of metal lines (24) filled in the trenches. The first dielectric layer includes multi sub-dielectric layers (211, 212, 213). Wherein a plurality of air gaps (28) are maintained between the metal lines and at least one of the sub-dielectric layers. A method for fabricating the damascene interconnect structure is also provided.
Abstract:
An exemplary thin film transistor substrate (30) includes a bas substrate (31) and a gate electrode (32) formed on the bas substrate. The gate electrode includes a bonding layer (321) formed on the bas substrate and an electrically conductive layer (322) formed on the bonding layer. The bonding layer includes one of aluminum oxide and zirconium dioxide.