Abstract:
A gear pitch error correcting system for a numerical control apparatus used for a machine tool including at least one pair of gears provided in a transmission line through which the rotating force of a servomotor is transmitted to a driven member. Gear pitch error correction values for the respective gears, which each correspond to a predetermined gear angle and collectively cover one gear rotation, are stored in a nonvolatile memory. A pitch error computing means (E) refers to a current position register (D), reads out pitch error correction data (14b) corresponding to the current position from the nonvolatile memory, and adds up the data to obtain a superimposed pitch error correction value. The superimposed pitch error correction value and an interpolation pulse from an interpolating means (B) are added together by an adder (C), to obtain a pitch error-corrected output pulse, which is then supplied to an axis control circuit (18). Accordingly, even with a relatively small number of gear pitch error correction values for the individual gears, a gear pitch error correction can be precisely executed in proportion to the superimposing of the gear pitch error correction values.
Abstract:
A three-dimensional coordinate transformation control system controls three-dimensional coordinate transformation in a computerized numerical control apparatus for controlling a machine tool having a plurality of heads. A pre-processing calculating unit (2) decodes a machining program (1), effects three-dimensional coordinate transformation for only a first head in a three-dimensional coordinate transforming unit (3), and distributes pulses based on transformed coordinates to a pulse distributing unit (4). For a second head, the coordinates for the first head are used as they are, and pulses based on the coordinates are distributed by a pulse distributing unit (5). The three-dimensional coordinate transformation is therefore calculated by a reduced number of times, and the burden on the computerized numerical control apparatus for calculations is reduced.
Abstract:
A numerical control unit grips a bar-shaped workpiece (18) at two points longitudinally of the workpiece by gripping members (16, 17), and rotates the gripping members synchronously by respective spindle motors (14, 15). The workpiece is subjected to turning machining by a cutter (25) while the gripping members are being synchronously rotated, and an end face of the workpiece is thereafter subjected to separate machining. The unit synchronously controls a first axis along which the first spindle motor (14) is moved in the horizontal direction and a second axis along which the second spindle motor (15) is moved in the horizontal direction in accordance with numerical information regarding the first axis in response to a synchronous control command. The first and second axes are controlled in accordance with numerical information regarding each of the first and second axes in response to an independent control command.
Abstract:
A clamping tracer control system which performs a tracing feed and a pick feed alternately and effects a clamping feed at a preset clamp level and in which, between the pick feed position where the clamping feed is carried out first and the pick feed position where the clamping feed has been completed, tracer control is repeated while changing the clamp level sequentially, and when the clamping feed has been completed in the repeated tracer control, the clamp level is restored to its area of initial value to resume tracer control of the tracing feed and the pick feed alternately in the next area.
Abstract:
During a tracing operation of a tracer head for detecting the surface configuration of a model, the current position of the tracer head in the Z-axis direction is detected and a maximum value of the detected tracer head positions is stored in a memory means. When the tracer head is returned from a trace terminating end to a trace starting end, it is quickly returned to a position corresponding to the sum of the stored maximum value and a constant value.
Abstract:
Data for determining a limit value of the trace range of a model are stored in a memory and the stored data are read out therefrom by a processor to calculate the limit value of the trace range. The current position of a movable machine part is detected and compared with the limit value and when it is detected by the processor that the current position of the movable machine part has reached the limit value, a trace feed is switched to a pick feed. After the pick feed is performed a predetermined distance, it is switched again to the trace feed. A desired trace range is set to achieve tracer control without the provision of limit switches.
Abstract:
In one forward or backward trace path on a model, a jerk point in the surface configuration of the model is detected and the position of the jerk point is stored in a memory. The reduction of the trace velocity is started a predetermined distance short of the stored position of the jerk point in the trace direction and when a jerk point is detected again, the position of the jerk point previously stored in the memory is updated and the reduction of the trace velocity is released, thus achieving high accuracy trace.
Abstract:
In a system which calculates a digital quantity at known time intervals and converts the calculated result to analog form to apply a command, for example, to a numerical-controlled machine tool, there is provided a circuit which obtains a difference value between current and previous calculated results and outputs a value obtained by dividing the difference value by N, and an adder which adds the output from the dividing circuit to the previous calculated result at time intervals of 1/N of the known time interval. The added result by the adder is converted to analog form at time intervals of 1/N of the known time interval to issue the command; as a consequence, the command does not change abruptly but undergoes a smooth change, eliminating the possibility of a great shock being imparted to controlled equipment, for example, a numerical-controlled machine tool.
Abstract:
The present invention provides a peroxisome proliferator-activated receptor (PPAR) activator, which is free from the problem of side effects, can be taken over a long term and has no characteristics taste. Nobiletin is employed as a PPAR activator. Nobiletin has an excellent PPAR activity and has an excellent adiponectin secretion-promoting effect, and is contained in a large amount in citrus fruits, in particular, in Shiikuwasha (Citrus depressa HAYATA) indigenous to Okinawa (Japan). Since citrus fruits have been consumed for many years, the safety of nobiletin has been proven and besides, nobiletin has a low calorie content. Therefore, it can be taken over a long term. Moreover, because of being tasteless and odorless, nobiletin would not damage the unique taste of a food when added thereto. Therefore, it can be added to foods and taken.
Abstract:
A composite semipermeable membrane in which a polyamide separation functional layer is formed on a porous support membrane includes a substrate and a porous support, wherein a standard deviation of a membrane thickness of the separation functional layer is 2.00 nm or less.