摘要:
A spline interpolation method of subjecting given points to interpolation by using a cubic spline curve is provided. A first-derivative vector is derived from a preset number of points including a starting point (P.sub.1), and a cubic equation between the starting point and a next point is derived based on the coordinate values of the preset points including the starting point (P.sub.1) and the extreme point condition of the starting point (P.sub.1), to derive a spline curve between the starting point (P.sub.1) and a point (P.sub.2) next to the starting point (P.sub.1). Next, the first-derivative vector at P.sub.2 and a new next point are used instead of the starting point (P.sub.1), to derive a cubic curve between P.sub.2 and P.sub.3. In this way, a cubic equation between points is sequentially derived to obtain a cubic spline curve, and as a result, a spline curve posing no practical problems can be obtained without previously receiving all of the sequential points, while sequentially receiving the sequential points in a forward direction.
摘要:
A system for a remote diagnosis of a numerical control apparatus (CNC), for remotely diagnosing a failure of the CNC. A personal computer is operated by a service engineer and a remote operation command is output to the CNC through a communication line. Diagnosis data of the CNC is selected based on the remote operation command, transferred to the personal computer, and displayed on a display unit, whereby the service engineer can make diagnosis of the cause of the failure at the CNC, based on the diagnosis data displayed.
摘要:
Expert knowledge regarding investigation of the causes of various failures, and knowledge for extracting DI/DO information (IOD), which is exchanged by an NC unit (11) and a machine tool (13), as well as information (ITD) internally of the NC unit, is stored in a knowledge base (IB). When the contents of a failure are entered from an alarm detector (11g) upon occurrence of the failure, a reasoning mechanism (ADPR) uses the expert knowledge conforming to the failure to automatically extract the DI/DO information and information internally of the NC unit (IOD, ITB), ascertains actually occurring phenomena based on this information, recognizes the cause of the failure from these pheonomena, and displays the cause of the failure and a method of dealing with it.
摘要:
A tapping control apparatus effects tapping operation by synchronizing the rotation of a spindle and the movement along a Z-axis through pulse distribution. The tapping control apparatus has a time constant determining unit (2) for determining a time constant according to a command speed for the spindle. The determined time constant is given to an acceleration/deceleration control circuit (10, 20) for performing tapping operation. Since a time constant is selected according to the rotational speed of the spindle, the time constant can be large to prevent overshooting or the like when the rotational speed of the spindle can be high, and the time constant is small for higher-speed machining operation when the rotational speed of the spindle is low.
摘要:
First and second tool control blocks respectively precede and follow a corner on a tool path. A pulse distribution computation based on NC command data in the second block is not executed at the instant that a pulse distribution computation based on NC command data in the first block ends. Rather, a pulse distribution computation based on the NC command data in the second block is performed starting at the instant that a feed speed based on the NC command data in the first block is reduced to a prescribed speed by being decelerated. As a result, the torch of a gas cutting machine or the like will cut the corner portion quickly with a high degree of accuracy and without cutting the corner to an overly rounded shape.
摘要:
An involute interpolation method is provided for machining operations in a numerical control apparatus, in which a rotational direction of an involute curve, a center position of a base circle (C), and a radius (R) of the base circle (C) are instructed, and an interpolation is performed with respect to an involute curve having a start point (P.sub.s) on a first involute curve (IC1) and an end point (P.sub.e) on a second involute curve (IC2). According to such a method, machining operations can be done by the use of a specifically configured involute curve which is distinct from the two involute curves.
摘要:
A numerical control method and a system therefor can perform numerical control repeatedly in accordance with a numerical control program modified by utilization of an override function. It is judged whether or not a teaching command is inputted during execution of the numerical control program (S1). When it is judged that a feed speed or spindle speed override storage command is inputted in the teaching mode (S2, S6), an override value manually set by an override switch is written into the end of a block in execution in the numerical control program (step S10). At execution of the numerical control program on and after the next time, override operation as set manually is carried out automatically.
摘要:
In checking tool rests for interference, interpolative simulations are executed by interpolation simulators (103, 104) one block at a time in successive fashion based on first and second NC programs (101, 102). In a case where the tool rests interfere with each other, the interpolative simulations are halted and both tool rests are moved backward to the beginning of the blocks in which the interference occurred. Thereafter, with the interpolative simulation based on one NC program being kept in the halted state, the interpolative simulation based on the other NC program is executed to move the other tool rest separately along a path in the interfering block. If interference does not occur during this separate movement, sequence numbers N, M of the firt and second NC programs in the blocks in which the interference occurred are stored in a storage area (301a). Thereafter, a similar interference check is performed. After the interference check, the first and second NC programs 101, 201 are revised by inserting a wait command ahead of the block of sequence number M in the NC program for which the interpolative simulation was halted, and inserting a wait command after the block of sequence number N in the NC program for which the interpolative simulation was executed.
摘要:
A cylindrical interpolation system for machining a cylindrical surface of a cylindrical workpiece, wherein a tool diameter correcting means (104) obtains a tool center path by calculating a tool diameter offset vector for a machining shape specified with reference to an assumed orthogonal coordinate system, and an interpolating means (107) interpolates the tool center path and outputs an interpolation pulse (PCyi) related to an assumed linear axis and an interpolation pulse (PZi) related to a cylindrical axis. To effect a reverse conversion from the assumed orthogonal coordinate system to the cylindrical coordinate system, a pulse converting means (108) converts the interpolation pulse (PCyi) into an interpolation pulse (PCi) for rotating the rotary axis. A block-start correction component calculating means (105) and synchronous correction component calculating means (109) calculate correction components (Vcy, .DELTA.Vcy), and these correction components (Vcy, .DELTA.Vcy) are interpolated by a block-start correction component interpolating means (106) and synchronous correction component interpolating means (110), and added to the interpolation pulse (PCi) for rotating the rotary axis. As a result, the tool cutting surface can be always located immediately above the axis of rotation of the workpiece, and the side surface being machined is at a right angle to the cylindrical surface of the workpiece.
摘要:
Numerical control apparatus for controlling a mirror image function in a machining program. When a mirror image code and a position for each coordinate axis with a mirror are set (steps S2, S4, S7), mirror image instruction executing data (FX=1, FY=1) and mirror positions (XM, YM) are set for the coordinate axis with the mirror (steps S5, S6, S8, S9). Shift instruction values (Xi, Yi) Programmed in response to the execution data and mirror positions are converted to mirror image shift instruction values (2XM-Xi, 2YM-Yi) (steps S12, S15), and the mirror image shift instruction values are output (step S16). NC machining is executed according to the mirror image shift instruction values.