Abstract:
Systems and techniques, including special messages and state machines, are described that configures an intermediate site to dynamically trigger creation of and removal of a dynamic conduit between two sites based on usage that is tracked at the sites. The intermediate site providing WAN-to-WAN forwarding between the two sites, monitors throughput statistics on each local WAN link (LWL) associated with the two sites. If traffic between the two sites passes a configured first threshold or if LWL usage passes a configured second threshold, the intermediate site sends a message to the two sites to set up a dynamic conduit directly coupling the two sites. Busy lists are used to keep track of eligible site pairs. Once a dynamic conduit is set up between two sites, a grow technique tests the dynamic conduit increasing communication flows between the two sites each configured sampling period before putting the conduit in normal use.
Abstract:
System and techniques are described which apply a method for automatic database schema migration. An initial database is installed, according to rules that define tables of data, in an adaptive private network (APN) having a centralized management system including a network control node (NCN) coupled through the APN to a plurality of client nodes, wherein the NCN provides timing and control to the client nodes. An update to the initial database is received, wherein the initial database includes a first table of data stored in a first set of columns and the updated database includes a modified first table having a second set of columns that has a different number of columns as compared to the first table is automatically detected. One or more columns from the second set of columns that are different than the first set of columns are updated for data content.
Abstract:
Systems and techniques are described for a centralized management system operating within a virtual machine which configures, monitors, analyzes, and manages an adaptive private network (APN) to provide a discovery process that learns about changes to the APN through a network control node (NCN) that is a single point of control of the APN. The discovery process automatically learns a new topology of the network without relying on configuration information of nodes in the APN. Network statistics are based on a timeline of network operations that a user selected to review. Such discovery and timeline review is separate from stored configuration information. If there was a network change, the changes either show up or not show up in the discovery process based on the selected time line. Configuration changes can be made from the APN VM system by loading the latest configuration on the APN under control of the NCN.
Abstract:
Systems and techniques are described for a centralized management system operating within a virtual machine which configures, monitors, analyzes, and manages an adaptive private network (APN) to provide a discovery process that learns about changes to the APN through a network control node (NCN) that is a single point of control of the APN. The discovery process automatically learns a new topology of the network without relying on configuration information of nodes in the APN. Network statistics are based on a timeline of network operations that a user selected to review. Such discovery and timeline review is separate from stored configuration information. If there was a network change, the changes either show up or not show up in the discovery process based on the selected time line. Configuration changes can be made from the APN VM system by loading the latest configuration on the APN under control of the NCN.
Abstract:
Systems and techniques are described for a path maximum transmission unit (MTU) discovery method that allows the sender of IP packets to discover the MTU of packets that it is sending over a conduit to a given destination. The MTU is the largest packet that can be sent through the network along a path without requiring fragmentation. The path MTU discovery method actively probes each sending path of each conduit with fragmentation enabled to determine a current MTU and accordingly increase or decrease the conduit MTU. The path MTU discovery process is resilient to errors and supports retransmission if packets are lost in the discovery process. The path MTU discovery process is dynamically adjusted at a periodic rate to adjust to varying network conditions.
Abstract:
Systems and techniques are described for a path maximum transmission unit (MTU) discovery method that allows the sender of IP packets to discover the MTU of packets that it is sending over a conduit to a given destination. The MTU is the largest packet that can be sent through the network along a path without requiring fragmentation. The path MTU discovery method actively probes each sending path of each conduit with fragmentation enabled to determine a current MTU and accordingly increase or decrease the conduit MTU. The path MTU discovery process is resilient to errors and supports retransmission if packets are lost in the discovery process. The path MTU discovery process is dynamically adjusted at a periodic rate to adjust to varying network conditions.
Abstract:
Systems and techniques are described for a centralized management system operating within a virtual machine which configures, monitors, analyzes, and manages an adaptive private network (APN) to provide a discovery process that learns about changes to the APN through a network control node (NCN) that is a single point of control of the APN. The discovery process automatically learns a new topology of the network without relying on configuration information of nodes in the APN. Network statistics are based on a timeline of network operations that a user selected to review. Such discovery and timeline review is separate from stored configuration information. If there was a network change, the changes either show up or not show up in the discovery process based on the selected time line. Configuration changes can be made from the APN VM system by loading the latest configuration on the APN under control of the NCN.
Abstract:
Systems and techniques are described which improve performance, reliability, and predictability of networks. Geographically diverse network control nodes (NCNs) are provided in an adaptive private network (APN) to provide backup NCN operations in the event of a failure. A primary NCN node in a first geographic location is operated according to a primary state machine at an NCN active state. A client node is operated according to a client state machine. A secondary NCN node in a second geographic location that is geographically remote from the first geographic location is operated according to a secondary state machine at a standby state. The three state machines operating parallel and upon detecting a change in APN state information, the secondary state machine transitions from the standby state to a secondary active NCN state and the secondary NCN node provides APN timing calibration and control to the client node.