Abstract:
There is provided a catalytic combustion apparatus that allows power consumption of a carburetor heater to be significantly reduced, and allows a fuel consumption amount to be reduced. A catalytic combustion apparatus including: a fuel tank 1 for feeding fuel and others, an air feeding fan 5 for feeding air and others, a carburetor 8 for evaporating the above described fuel, a gas mixture space 15 that holds the above described evaporated fuel and the above described air, a catalytic combustion unit 17 adjacent to the above described gas mixture space, and a catalyst heating element 10 provided in the gas mixture space 15, characterized in that the catalyst heating element 10 has a first heating compartment 11 and a second heating element compartment 12 provided from upstream to downstream of a flow of the above described gas mixture, and that the compartments carry catalysts on all or part thereof and are provided with a first gas mixture vent 13 and a second gas mixture vent 14.
Abstract:
A catalyst combustion apparatus, includes: a fuel feed course for feeding liquid fuel; an air feed course for feeding air; a mixing unit for mixing fuel to be fed from the fuel feed course with air to be fed from the air feed course; a vaporizing unit for heating mixture-obtained by mixing in the mixing unit to vaporize the liquid fuel; a catalyst heating unit disposed on the downstream side of the vaporizing unit in contact with or in close proximity to the vaporizing unit in terms of conduction of heat, for carrying an oxidation catalyst component; and a catalyst combustion unit provided on the downstream of the catalyst heating unit, having a multiplicity of conductive holes, and the vaporizing unit is capable of utilizing heat from the catalyst heating unit.
Abstract:
A control section relatively decreases an absolute value of a current supplied to a discharge lamp in a first period and relatively increases the absolute value in a second period, and in the second period, performs any one of a first control for supplying an alternating current to the discharge lamp, a second control for supplying, to the discharge lamp, a current in which a maximum duration of a first polarity is longer than that in the first control, and a third control for supplying, to the discharge lamp, a current in which a maximum duration of a second polarity is longer than that in the first control, and as the state of deterioration proceeds, decreases at least one of the maximum duration of the first polarity in the second control and the maximum duration of the second polarity in the third control.
Abstract:
A projector includes a light source lamp, a lighting control unit adapted to supply a lamp electric power to turn on the light source lamp, a cooling unit adapted to send a cooling fluid to cool the light source lamp, and a start control unit adapted to, from the start of turn-on of the light source lamp until a predetermined period elapses, adjust at least one of the length of the predetermined period and a limited flow rate, which is the flow rate of the cooling fluid per unit time sent from the cooling unit within the predetermined period, on the basis of an operation history of the light source lamp to control the operation of the cooling unit.
Abstract:
To prevent biased consumption of electrodes in a discharge lamp and to prevent biased precipitation of the electrode material, a light source is provided. The light source device has a discharge lamp that emits light by discharge between a first electrode and a second electrode; and a driver that supplies alternating current to the first and the second electrodes so as to maintain the discharge, and changes duty ratio of the alternating current in accordance with predetermined pattern. The predetermined pattern includes a plurality of section periods for which the duty ratio maintains mutually different values for a predetermined period.
Abstract:
A projector includes a discharge lamp, a discharge lamp driver that supplies the discharge lamp with a current, and a controller that controls the discharge lamp driver. The controller controls the discharge lamp driver in such a way that the absolute magnitude of the current is relatively small in the first period and relatively large in the second period. In the second period, the controller carries out a second-period AC control process in which an AC current is supplied to the discharge lamp. In the first period, the controller carries out a first-period control process in which in a third period, the absolute magnitude of the current becomes a minimum in the first period and in a fourth period, the absolute magnitude of the current becomes an intermediate value between the minimum and a maximum absolute magnitude of the current in the second period.
Abstract:
In at least one embodiment of the disclosure, a driving device for a discharge lamp includes an alternating current supply section and a frequency modulation section. The alternating current supply section supplies two electrodes of the discharge lamp with an alternating current. The alternating current comprises a plurality of modulation periods. The frequency modulation section modulates a frequency of the alternating current so as to provide a plurality of retentive periods within each of the modulation periods. Each retentive period has a constant frequency that is different from a frequency of its temporally adjacent retentive periods. The frequency modulation section shortens a length of at least one of the retentive periods in the modulation period in response to a predetermined condition occurring. The frequency of at least one of the retentive periods is equal to or less than a predetermined reference frequency.
Abstract:
In at least one embodiment of the disclosure, a discharge lamp driving device includes a discharge lamp lighting unit configured to supply power to a discharge lamp while alternately switching a polarity of a voltage applied across two electrodes of the discharge lamp. A controller performs a modulation control of the power in accordance with a power ratio characterized by the power supplied in a polarity switching period. The controller starts the modulation control at a predetermined time after the power supplied to the discharge lamp reaches a predetermined power value.
Abstract:
A discharge lamp drive device for driving a discharge lamp including a first electrode and a second electrode, include: a power supply unit which supplies alternating power to the discharge lamp by inputting alternating current between the first electrode and the second electrode, wherein the power supply unit includes a power reduction control unit which reduces the alternating power from a first level to a second level lower than the first level, and a duty ratio control unit which steppedly varies duty ratio of the alternating current in a predetermined period at the time of reduction of the alternating power.
Abstract:
A projector includes a light source lamp, a lighting control unit adapted to supply a lamp electric power to turn on the light source lamp, a cooling unit adapted to send a cooling fluid to cool the light source lamp, and a start control unit adapted to, from the start of turn-on of the light source lamp until a predetermined period elapses, adjust at least one of the length of the predetermined period and a limited flow rate, which is the flow rate of the cooling fluid per unit time sent from the cooling unit within the predetermined period, on the basis of an operation history of the light source lamp to control the operation of the cooling unit.