Abstract:
A radar system includes a set of transmitters and a processor coupled to the set of transmitters, which includes first, second, third and fourth transmitters. In operation, the processor generates a first chirp of a set of chirps, in which outputs of the first and second transmitters are modulated by a first phase and outputs of the third and fourth transmitters are modulated by a second phase; and generate a second chirp of the set of chirps, in which outputs of the first and fourth transmitters are modulated by the first phase and outputs of the second and third transmitters are modulated by the second phase.
Abstract:
A millimeter or mm-wave system includes transmission of a millimeter wave (mm-wave) radar signal by a transmitter to an object. The transmitted mm-wave radar signal may include at least two signal orientations, and in response to each signal orientation, the object reflects corresponding signal reflections. The signal reflections are detected and a determination is made as to location of the object.
Abstract:
In accordance with described examples, a method determines if a velocity of an object detected by a radar is greater than a maximum velocity by receiving on a plurality of receivers at least one frame of chirps transmitted by at least two transmitters and reflected off of the object. A velocity induced phase shift (φd) in a virtual array vector S of signals received by each receiver corresponding to a sequence of chirps (frame) transmitted by each transmitter is estimated. Phases of each element of virtual array vector S are corrected using φd to generate a corrected virtual array vector Sc. A first Fourier transform is performed on the corrected virtual array vector Sc to generate a corrected virtual array spectrum to detect a signature that indicates that the object has an absolute velocity greater than a maximum velocity.
Abstract:
An apparatus, including processing unit (PU) cores and computer readable storage devices storing machine instructions for determining a distance between a target object and a radar sensor circuit. The PU cores receive a beat signal generated by the radar sensor circuit and compensate for a phase difference between the received beat signal and a reconstruction of the received beat signal to obtain a phase compensated beat signal. The phase compensated beat signal is then filtered to remove spurious reflections by demodulating the phase compensated beat signal using an estimated frequency of the phase compensated beat signal. The PU cores then apply a low pass filter to the demodulated phase compensated beat signal, resulting in a modified beat signal. The PU cores then determine the distance between the target object and the radar sensor circuit using the modified beat signal.
Abstract:
A matrix compression/decompression accelerator (MCA) system/method that coordinates lossless data compression (LDC) and lossless data decompression (LDD) transfers between an external data memory (EDM) and a local data memory (LDM) is disclosed. The system implements LDC using a 2D-to-1D transformation of 2D uncompressed data blocks (2DU) within LDM to generate 1D uncompressed data blocks (1DU). The 1DU is then compressed to generate a 1D compressed superblock (CSB) in LDM. This LDM CSB may then be written to EDM with a reduced number of EDM bus cycles. The system implements LDD using decompression of CSB data retrieved from EDM to generate a 1D decompressed data block (1DD) in LDM. A 1D-to-2D transformation is then applied to the LDM 1DD to generate a 2D decompressed data block (2DD) in LDM. This 2DD may then be operated on by a matrix compute engine (MCE) using a variety of function operators.
Abstract:
In accordance with described examples, a method determines if a velocity of an object detected by a radar is greater than a maximum velocity by receiving on a plurality of receivers at least one frame of chirps transmitted by at least two transmitters and reflected off of the object. A velocity induced phase shift (φd) in a virtual array vector S of signals received by each receiver corresponding to a sequence of chirps (frame) transmitted by each transmitter is estimated. Phases of each element of virtual array vector S are corrected using φd to generate a corrected virtual array vector Sc. A first Fourier transform is performed on the corrected virtual array vector Sc to generate a corrected virtual array spectrum to detect a signature that indicates that the object has an absolute velocity greater than a maximum velocity.
Abstract:
A gesture recognition system is shown using a 77 GHz FMCW radar system. The signature of a gesturing hand is measured to construct an energy distribution in velocity space over time. A gesturing hand is fundamentally a dynamical system with unobservable “state” (i.e. the type of the gesture) which determines the sequence of associated observable velocity-energy distributions, therefore a Hidden Markov Model is used to for gesture recognition. A method for reducing the length of the feature vectors by a factor of 12 is also shown, by re-parameterizing the feature vectors in terms of a sum of Gaussians without decreasing the recognition performance.
Abstract:
In the proposed low complexity technique a hierarchical approach is created. An initial FFT based detection and range estimation gives a coarse range estimate of a group of objects within the Rayleigh limit or with varying sizes resulting from widely varying reflection strengths. For each group of detected peaks, demodulate the input to near DC, filter out other peaks (or other object groups) and decimate the signal to reduce the data size. Then perform super-resolution methods on this limited data size. The resulting distance estimations provide distance relative to the coarse estimation from the FFT processing.