Abstract:
An airfoil for a gas turbine engine, the airfoil includes a wall that has a leading edge and a trailing edge and at least partially defining a boundary of a leading edge cavity radially along the leading edge. A cooling jet structure is operatively associated with a portion of the wall proximate the leading edge and is configured to direct a cooling fluid tangent to the portion of the wall.
Abstract:
An airfoil has an airfoil structure that defines a cooling passage for directing a cooling medium through the airfoil structure. A swirl structure is operatively associated with the cooling passage and configured to impart a tangential velocity to the cooling medium flowing through the cooling passage. An airfoil has an airfoil structure that defines a first cooling passage and a second cooling passage for directing cooling medium through the airfoil structure, each cooling passage having a swirl structure that imparts tangential velocity on the cooling medium flowing through the associated cooling passage. A method of making an airfoil that includes forming an airfoil structure that defines a cooling passage for directing a cooling medium through the airfoil structure and forming a swirl structure that is operatively associated with the cooling passage and imparts tangential velocity to the cooling medium flowing through the cooling passage.
Abstract:
An exemplary method of forming an endwall with a contour includes casting an endwall with at least one cooling channel having an opening from the endwall, and covering the opening with a cupped contour formed on the endwall. An exemplary gas turbine engine blade assembly includes an endwall with a plurality of cooling channels, an airfoil extending radially from the endwall to a tip, and a cupped contour formed on the endwall to provide a cooling chamber between the cupped contour and a radially facing surface of the endwall.
Abstract:
A seal for sealing a space defined by first and second components, the seal including at least one first seal and at least one second seal wherein at least a portion of the at least one first seal is disposed in the at least one second seal.
Abstract:
A mold for manufacturing a casted workpiece is, at least in-part, manufactured utilizing an additive manufacturing process. The mold may have a core having non-line-of-sight features that are additively manufactured and in contact with an outer shell of a wax mold and/or an outer shell of a casting mold of the mold. The outer shell of either the wax or casting molds may also be additively manufactured, and the shell of the casting mold may be additively manufactured as one unitary piece to the core.
Abstract:
One exemplary embodiment of this disclosure relates to a gas turbine engine including a first engine component and a second engine component. The first engine component has a mate face adjacent a mate face of the second engine component. The engine further includes a seal between the mate face of the first engine component and the mate face of the second engine component. The seal establishes three points of contact with each mate face in at least one condition.
Abstract:
An airfoil structure for a gas turbine engine includes an airfoil that includes a suction side cooling circuit with at least two segments that are connected by at least one impingement passage.
Abstract:
A seal for sealing a space defined by first and second components, the seal including at least one first seal and at least one second seal wherein at least a portion of the at least one first seal is disposed in the at least one second seal.
Abstract:
An internally cooled component of a gas turbine engine is provided. The component may include a cooling passage at least partially defined by a first wall and a second wall with a first pedestal extending from the first wall to the second wall. The first pedestal may have a chevron geometry. A second pedestal may extend from the first wall to the second wall and also have a chevron geometry. A gap may be defined by the first pedestal and the second pedestal with the gap oriented between the first pedestal and the second pedestal.
Abstract:
A conduction riser additively manufactured onto thin metal parts, the conduction riser extending in a build direction of the thin metal part and traversing the thin metal part as the conduction riser extends in the build direction. The conduction riser transferring heat from the upper layers of additively manufactured part during manufacturing, preventing thermal deflection of the part.