Abstract:
A disclosed method utilizes virtual representations of gear profiles produced in view of accuracies and capabilities of specific machine and tool combinations to validate profile finishing parameters. The virtual representations are utilized to identify modifications needed to account for process capability and are implemented into the process to change the nominal profile utilized for producing the finished gear profiles. The resulting nominal gear profile accounts for process variations and thereby provides a more accurate and repeatable gear tooth profile.
Abstract:
A cutting tool comprising a tool body comprising a shank and a cutter opposite the shank, the body defining a length from a shank end to an end face opposite the shank end, a central axis extends along the length of the body; at least one tooth having a cutting edge, the cutting edge extending along the tooth from the shank to the end face; a flute formed adjacent the at least one tooth; at least one cooling channel formed in the tooth proximate the at least one cutting edge, the at least one cooling channel having an elongated cross sectional shape with an elliptical portion and a circular portion opposite the elliptical portion, wherein the elliptical portion is located proximate the cutting edge.
Abstract:
An integrally bladed rotor, including: a plurality of blades integrally formed with a hub as a single component, each of the plurality of blades having a blade body extending from the hub to an opposed blade tip surface along a longitudinal axis, wherein the blade body defines a pressure side and a suction side, and wherein the blade body includes a cutting edge defined between the blade tip surface of the blade body and the pressure side of the blade body, wherein the cutting edge is configured to abrade a seal section of an engine case. A method for manufacturing an integrally bladed rotor includes: forming a plurality of airfoils integrally with a hub to form a single component, each of the plurality of airfoils having an opposed tip surface with respect to the hub extending along a longitudinal axis, wherein each of the plurality of airfoils defines a pressure side and a suction side; and forming a cutting edge between the tip surface and the pressure side of each of the plurality of airfoils, wherein the cutting edge is configured to abrade a seal section of an engine case.
Abstract:
A fan blade for a gas turbine engine is disclosed. The disclosed fan blade includes an airfoil having a leading edge, a trailing ling edge, a convex side, a concave side and a distal tip. The leading edge, trailing edge, convex side and concave side of the airfoil is at least partially coated with an erosion resistant coating. The distal tip of the airfoil is coated with a bonded abrasive coating. The bonded abrasive coating engages the abradable coating disposed on the fan liner and, because of its low thermal conductivity, reduces heat transfer to the distal tip of the fan blade. The reduction in heat transfer to the distal tip of the fan blade preserves the integrity of erosion resistant coatings that may be applied to the body or the airfoil of the fan blade.
Abstract:
A disclosed method utilizes virtual representations of gear profiles produced in view of accuracies and capabilities of specific machine and tool combinations to validate profile finishing parameters. The virtual representations are utilized to identify modifications needed to account for process capability and are implemented into the process to change the nominal profile utilized for producing the finished gear profiles. The resulting nominal gear profile accounts for process variations and thereby provides a more accurate and repeatable gear tooth profile.
Abstract:
A method of forming a curved slot in a turbine disk includes the steps of forming a pre-slot in the turbine disk and finishing the pre-slot to form a slot that receives a portion of a turbine blade. The turbine disk including a first face, an opposing second face, and an outer perimeter surface extending between the first face and the opposing second face. The pre-slot includes a first curved wall and a second curved wall that each extend between the first face and the opposing second face. An intersection between the outer perimeter surface and each of the first curved wall and the second curved wall is defined by a curved line.
Abstract:
A tool is disclosed that has an elongated tool body defining a longitudinal axis and includes a ball-end section having a positive taper angle relative to the longitudinal axis of the tool body, and a relief section that extends rearwardly from the ball-end section and has a negative taper angle relative to the positive taper angle of the ball-end section.
Abstract:
A method for forming a component having an abrasive portion includes forming the component and selectively forming a coating on the component using electric spark deposition to form the abrasive portion. A method for coating a blade tip with an abrasive material includes forming a blade having a tip and depositing a coating on the blade tip using electric spark deposition. A method includes providing a casing having an inner diameter surface, locating an abradable coating on a portion of the inner diameter surface, providing a blade configured to rotate within the casing and having a blade tip where the blade tip and the inner diameter surface of the casing form a seal, and depositing an abrasive coating on the blade tip using electric spark deposition so that the abrasive coating and abradable coating interact during rotation of the blade within the casing.
Abstract:
A turbine engine system comprising a turbine engine component, such as a fan includes a fan casing and a fan blade rotatable within the fan casing. An abradable seal coupled to the fan casing proximate the fan blade. The abradable seal comprising an abradable composite layer including a MAX phase solid and a polymer based abradable composition.