Abstract:
A gas turbine engine according to an example of the present disclosure includes, among other things, a fan shaft driving a fan having fan blades, a fan shaft support that supports the fan shaft. The fan shaft support defines a fan shaft support transverse stiffness. A gear system connected to the fan shaft includes a ring gear defining a ring gear transverse stiffness, a gear mesh defining a gear mesh transverse stiffness, and a reduction ratio greater than 2.3. The ring gear transverse stiffness is less than 20% of the gear mesh transverse stiffness. A flexible support supports said gear system and defines a flexible support transverse stiffness. The flexible support transverse stiffness is less than 20% of the fan shaft support transverse stiffness.
Abstract:
A gas turbine engine includes a gear system that provides a speed reduction between a fan drive turbine and a fan rotor. Aspects of the gear system are provided with some flexibility. The fan drive turbine has a first exit area and rotates at a first speed. A second turbine section has a second exit area and rotates at a second speed, which is faster than said first speed. A performance quantity can be defined for both turbine sections as the products of the respective areas and respective speeds squared. A performance quantity ratio of the performance quantity for the fan drive turbine to the performance quantity for the second turbine section is relatively high.
Abstract:
A gas turbine engine includes a fan shaft and a support which supports the fan shaft. The support defines at least one of a support transverse and a support lateral stiffness. A gear system drives the fan shaft. A flexible support at least partially supports the gear system, and defines at least one of a flexible support transverse and a flexible support lateral stiffness with respect to at least one of the support transverse and the support lateral stiffness. An input to the gear system defines at least one of an input transverse and an input lateral stiffness with respect to at least one of the support transverse and the support lateral stiffness. A method of designing a gas turbine engine is also disclosed.
Abstract:
A gas turbine engine includes a flex mount for a fan drive gear system. A very high speed fan drive turbine drives the fan drive gear system.
Abstract:
A gas turbine engine includes a flex mount for a fan drive gear system. A very high speed fan drive turbine drives the fan drive gear system.
Abstract:
A gas turbine engine includes a flex mount for a fan drive gear system. A very high speed fan drive turbine drives the fan drive gear system.
Abstract:
A geared architecture for a gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, a fan shaft, a frame which supports the fan shaft, the frame defines a frame stiffness and a plurality of gears which drives the fan shaft. A flexible support defines a flexible support stiffness that is less than the frame stiffness. The plurality of gears are supported by at least one of a carrier and the flexible support and an input coupling to the plurality of gears, the input coupling defines an input coupling stiffness with respect to the frame stiffness.
Abstract:
An airfoil for a gas turbine engine according to an example of the present disclosure includes, among other things, an airfoil section that extends from a root section. The airfoil section extends between a leading edge and a trailing edge in a chordwise direction and extends between a tip portion and the root section in a radial direction. The airfoil section defines a pressure side and a suction side separated in a thickness direction, and the airfoil section includes a metallic sheath that defines an internal cavity receiving a composite core. The root section defines at least one bore dimensioned to receive a retention pin. At least one damping element is received in the internal cavity and that selectively causes the airfoil section to stiffen.
Abstract:
A gas turbine engine mount for an aircraft wing including a link body having a first joint, a second joint and a linking structure connecting the first joint to the second joint. The linking structure includes at least a flexing portion and an elastic portion. The flexing portion is configured to flex during a load outside of an expected load window.
Abstract:
A turbofan engine includes a fan section. A turbine section is in driving engagement with the fan section through a geared architecture. A flexible support supports the geared architecture relative to an engine static structure. A deflection limiter includes at least one of an axially extending branch or a radially extending branch. A flexible output shaft is in driving engagement with the fan section and driven by the geared architecture. A speed change mechanism for a gas turbine engine is also disclosed.