Abstract:
Airfoils for gas turbine engines are provided. The airfoils include an airfoil body extending between a leading edge and a trailing edge in an axial direction, between a pressure side and a suction side in a circumferential direction, and between a root and a tip in a radial direction, a first transitioning leading edge cavity located proximate the leading edge proximate the root of the airfoil body and transitioning axially toward the trailing edge as the first transitioning leading edge cavity extends radially toward the tip, and a second transitioning leading edge cavity located aft of the first transitioning leading edge cavity proximate the root of the airfoil body and transitioning axially toward the leading edge as the second transitioning leading edge cavity extends radially toward the tip. The second transitioning leading edge cavity includes an impingement sub-cavity and a film sub-cavity along the leading edge and proximate the tip.
Abstract:
Methods for manufacturing airfoils of gas turbine engines are provided. The methods include forming a main body core, the main body core including a feed cavity core portion, the main body core configured to form at least a part of an airfoil including an airfoil body, a platform, and an attachment element, forming a platform circuit core having a platform core extension, wherein the platform circuit core is configured to form a cooling circuit in the platform, wherein at least one of the feed cavity core portion and the platform core extension comprises a notch, assembling the platform circuit core to the main body core such that the platform core extension engages with the feed cavity core portion at the notch, casting an airfoil using the assembled platform circuit core and main body core, and removing a platform core extension element that is formed at the location of the notch.
Abstract:
A gas turbine engine component includes a wall that provides an exterior surface and an interior flow path surface. A film cooling hole extends through the wall and is configured to fluidly connect the interior flow path surface to the exterior surface. The film cooling hole has a pocket that faces the interior flow path and extends substantially in a longitudinal direction. The film cooling hole has a portion downstream from the pocket and is arranged at an angle relative to the longitudinal direction and extends to the exterior surface.
Abstract:
A wall of a gas turbine engine is provided. The wall may comprise an external surface adjacent a gas path and an internal surface adjacent an internal flow path. A film hole may have an inlet at the internal surface and an outlet at the external surface. A flow accumulator adjacent the inlet may protrude from the internal surface. A method of making an engine component is also provided and comprises the step of forming a component wall comprising an accumulator on an internal surface and a film hole defined by the component wall. The film hole may include an opening adjacent the accumulator and defined by the internal surface.
Abstract:
A blade for a gas turbine engine includes an airfoil that extends a span from a root to a tip. The airfoil is provided by a first portion near the root and has a metallic alloy. A third portion near the tip has a refractory material. A second portion joins the first and third portions and has a functional graded material.
Abstract:
A gas turbine engine component is described. The component includes a component wall having an internal surface that is adjacent a flow of coolant and an external surface that is adjacent a flow of gas. The component wall includes a cooling hole that has an inlet defined by the internal surface and an outlet defined by the external surface. The cooling holes also has a metering location having the smallest cross-section area of the cooling hole, an internal diffuser positioned between the inlet and the metering location, an accumulation diverter portion of the internal diffuser and an accumulator portion of the internal diffuser.
Abstract:
A component includes a component body. The component further includes a first passage disposed in the component body. The first passage includes a first end and a second end opposite the first end. The component further includes a second passage. The second passage extends from the second end of the first passage. The second passage includes a turn. The component further includes a third passage. The third passage extends from the second end of the first passage. The component further includes a first projection extending from a passage surface of the component body within the first passage. The first projection is disposed between the first and the second end of the first passage and is configured to direct debris transiting the first passage away from the second passage and into the third passage.
Abstract:
A turbomachine airfoil element comprises an airfoil having: an inboard end; an outboard end; a leading edge; a trailing edge; a pressure side; and a suction side. A span between the inboard end and the outboard end is 1.75-2.20 inches. A chord length at 50% span is 1.05-1.35 inches. At least two of: a first mode resonance frequency is 2400±10% Hz; a second mode resonance frequency is 4950±10% Hz; a third mode resonance frequency is 7800±10% Hz; a fourth mode resonance frequency is 8700±10% Hz; and a fifth mode resonance frequency is 12500±10% Hz.
Abstract:
One exemplary embodiment of this disclosure relates to a method of forming an engine component. The method includes forming an engine component having an internal passageway, the internal passageway formed with an initial dimension. The method further includes establishing a flow of machining fluid within the internal passageway, the machining fluid changing the initial dimension.
Abstract:
Methods for forming airfoil, cores for forming airfoil, and airfoils for gas turbine engines are described. The methods include forming an airfoil body about a core assembly, the core assembly comprising at least one core structure having a radially extending purge slot protrusion extending from a portion of the at least one core structure, removing the core assembly from the airfoil body to form one or more internal cavities, wherein at least one internal cavity has a cavity extension define by the purge slot protrusion, and forming a squealer pocket in a tip of the formed airfoil body, wherein a cavity purge slot is formed at the cavity extension to fluidly connect the respect internal cavity with the squealer pocket. The radially extending protrusion has a radial height that is equal to or less than five times a width thereof.