Abstract:
Organometallic compounds comprising an imidazole carbene ligand having a N-containing ring fused to the imidazole ring are provided. In particular, the N-containing ring fused to the imidazole ring may contain one nitrogen atom or more than one nitrogen atom. These compounds may demonstrate high photoluminescent (PL) efficiency, Gaussian emission spectra, and/or short excited state lifetimes. These materials may be especially useful as blue phosphorescent emitters.
Abstract:
A composition comprising a first compound capable of functioning as a phosphorescent emitter in an organic light emitting device at room temperature is provided. The first compound includes at least one substituent R, where each of the at least one substituent R has the formula of: - - -G1-G2, where the dashed line denotes the bond through which R is attached in the first compound; G1 is a non-aromatic cyclic or polycyclic group; G2 is selected from aryl and heteroaryl; and G1 and G2 are independently, optionally further substituted with a substituent selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof. Organic light emitting devices, consumer products, and formulations containing the first compound are also provided.
Abstract:
Novel heteroleptic iridium carbene complexes are provided. The complexes have lower-than expected sublimation temperatures, which is beneficial for the processing of these materials in solid state applications. Selective substitution of the ligands provides for phosphorescent compounds that are suitable for use in a variety of OLED devices. The carbene complexes can also be used as materials in a hole blocking layer and/or an electron transport layer to improve device performance.
Abstract:
Iridium complexes with ligands containing twisted aryl groups having extended conjugation (i.e., the twisted aryl is substituted with an additional aryl group) and organic light emitting devices including the same are disclosed. The iridium complexes can be used in organic light emitting devices may provide improved stability color, lifetime and manufacturing.
Abstract:
Iridium complexes with ligands containing twisted aryl groups having extended conjugation (i.e., the twisted aryl is substituted with an additional aryl group) and organic light emitting devices including the same are disclosed. The iridium complexes can be used in organic light emitting devices may provide improved stability color, lifetime and manufacturing.
Abstract:
Novel phosphorescent platinum complexes containing tetradentate ligands are provided. The disclosed compounds have three 6-membered metallocycle units in each tertadentate ligand. The disclosed compounds have desirable electronic properties that make them useful when incorporated into a variety of OLED devices.
Abstract:
A compound having a Pt tetradentate structure of Formula 1,
is provided. In the structure of Formula 1, rings C and D each independently represent 5- or 6-membered carbocyclic or heterocyclic ring; L1, L2, and L3 are each independently a direct bond, BR, NR, PR, O, S, Se, C═O, S═O, SO2, SiRR′, GeRR′, alkyl, cycloalkyl, or a combination thereof; the sum of n1 and n2 is 1 or 2; X is selected from NRE, O, S, and Se; X3 and X4 each independently carbon or nitrogen; and one of Q1, Q3, and Q4 is oxygen, and the remaining two of Q1, Q3, and Q4 each represents a direct bond. Formulations and devices, such as an OLEDs, that include the compound of Formula 1 are also described.
Abstract:
A compound having the formula (LA)mIr(LB)3-m, where LA is
and LB is selected from
is disclosed. In the formula (LA)mIr(LB)3-m, LA and LB are different; each of X1 to X5 is C—RF or nitrogen; X is selected from O, S, and Se; each R1, R2, RB, RD, RE, and RF is hydrogen or a substituent; R3 is alkyl, cycloalkyl, or a combination thereof; and m is 1 or 2. OLEDs, consumer products, and formulations including the compound are also disclosed.