Abstract:
A display panel has a display region including a first display region and a second display region. In an embodiment, the display panel includes sub-pixels located in the display region, an array substrate and the color filter substrate that are opposite to each other, and liquid crystal molecules located between the array substrate and the color filter substrate. In an embodiment, the sub-pixels include first sub-pixels located in the first display region and second sub-pixels located in the second display region. In an embodiment, in the second display region, some of the second sub-pixels are first-type sub-pixels. In an embodiment, the first-type sub-pixel includes a first electrode and a second electrode. In an embodiment, in a first or second direction, orthographic projections of the first electrode and the second electrode at least partially overlap, the first direction intersects the second direction intersect, and the first direction and the second direction are parallel to a plane of the display panel.
Abstract:
A touch-control display device includes a driving module, a first substrate disposed with one or more first force touch-control components, and a second substrate disposed with one or more second force touch-control components and one or more self-capacitance type touch-control electrodes. The first substrate and the second substrate are oppositely disposed, with a variable gap between the first substrate and the second substrate. The second force touch-control component comprises a plurality of first electrodes arranged in a matrix, and the plurality of first electrodes are connected to the driving module respectively through their corresponding first conducting wires. The self-capacitance type touch-control electrode comprises a plurality of second electrodes arranged in a matrix, and the plurality of second electrodes are connected to the driving module respectively through their corresponding second conducting wires.
Abstract:
An anti-counterfeit label includes an anti-counterfeit information layer and a first regionalized polarization film formed on the anti-counterfeit information layer. The first regionalized polarization film has at least two distinct polarization directions. The anti-counterfeit label further includes a second regionalized polarization film. The second regionalized polarization film is used to cover the first regionalized polarization film. The second regionalized polarization film is configured to be combined with the first regionalized polarization film to display the unique encrypted information in the anti-counterfeit information layer. Therefore, the identifiability of the anti-counterfeit label is improved and, in the meantime, the anti-counterfeit label becomes more secured.
Abstract:
A display panel includes a first transparent substrate and a second transparent substrate arranged opposite to the first transparent substrate, and multiple sub-regions arranged in an array, including a first sub-region and an adjacent second sub-region. The display panel also includes a first organic film layer configured on the first transparent substrate and a second organic film layer configured on the second transparent substrate. The first organic film layer and the second organic film layer comprise a polymer doped with a dichroic organic dye. The display panel also includes a first alignment layer configured on the surface of the first transparent substrate facing the second transparent substrate, and a second alignment layer configured on the surface of the second transparent substrate facing the first transparent substrate; and a liquid crystal layer sandwiched between the first transparent substrate and the second transparent substrate.
Abstract:
A liquid crystal display and a method for fabricating the same, an electronic apparatus are provided. The liquid crystal display includes: a first substrate and a second substrate disposed opposite to the first substrate; and multiple pixel units disposed between the first and the substrates, where each of the pixel units includes multiple sub-pixels with different colors; where each of the sub-pixels includes a liquid crystal layer disposed between the first and second substrates, a first alignment film disposed between the first substrate and the liquid crystal layer and a second alignment film disposed between the second substrate and the liquid crystal layer; where at least two sub-pixels in a pixel unit have different alignment directions relative to the first alignment film; and an alignment direction of a sub-pixel relative to the first alignment film is parallel to an alignment direction of this sub-pixel relative to the second alignment film.
Abstract:
An array substrate, including: a plurality of pixel units; an alignment layer covering the pixel units and having an alignment direction parallel to a plane of the array substrate; and a first electrode and a second electrode both disposed within each of the pixel units; where, the first electrode has at least one branch electrode, the branch electrode includes a median electrode and deflected electrodes disposed at two ends of the median electrode, respectively, the median electrode includes two straight portions inclined inversely, an angle formed between the deflected electrode and the alignment direction is less than an angle formed between the corresponding straight portion of the median electrode connected with the deflected electrode and the alignment direction, wherein, the angle formed between the straight portion of the median electrode and the alignment direction is larger than or equal to 21°, and smaller than or equal to 32°.
Abstract:
A liquid crystal display and a method for fabricating the same, an electronic apparatus are provided. The liquid crystal display includes: a first substrate and a second substrate disposed opposite to the first substrate; and multiple pixel units disposed between the first and the substrates, where each of the pixel units includes multiple sub-pixels with different colors; where each of the sub-pixels includes a liquid crystal layer disposed between the first and second substrates, a first alignment film disposed between the first substrate and the liquid crystal layer and a second alignment film disposed between the second substrate and the liquid crystal layer; where at least two sub-pixels in a pixel unit have different alignment directions relative to the first alignment film; and an alignment direction of a sub-pixel relative to the first alignment film is parallel to an alignment direction of this sub-pixel relative to the second alignment film.