摘要:
Conventional approach for relay nodes in a wireless system only uses one type of relay in part of or entire system and it does not change dynamically. The present invention enables asymmetric replay for a number of aspects in a network.
摘要:
This invention pertains to wireless communications, specifically, methodology and algorithm to management resources and schedule users in a coordinated way among a group of base stations, such as Femtocells, Picocells, self-organized Basestations, Access Points (APs) or mesh network nodes, or among the basestations in a two tiered networks, to improve the performance for individual user, individual Basestation (BTS), the overall systems or all of above.
摘要:
Systems and methods pertaining to wireless communications, for enabling E-911 calls and location services from terminals in femtocell networks, picocell networks, relay stations, access points, etc., are disclosed.
摘要:
A Hybrid Automatic Retransmission Request (H-ARQ) technique is provided for Multi-Input Multi-Output (MIMO) systems. The technique changes the basis (V) upon retransmission, which helps reduce the error probability upon retransmission. This basis hopping technique provides for improved performance gain without significant increase in design complexity. In one embodiment, communication device (100) includes a receiver section (114) for receiving an acknowledgment (ACK) or a non-acknowledgment (NACK) signal in response to information transmitted by the transmitter section of the communication device. If a NACK is received, a new basis is selected from a set of basis stored in a basis set unit (110). The new basis that is selected is then used by a linear transformation unit (106) in the retransmission of the information.
摘要:
A method for hard-decision channel decoding of tail-biting convolutional codes includes the step of receiving from a channel an input bit stream encoded by a tail-biting convolutional channel encoder. The encoder includes a number of memory elements and a rate. The input bit stream includes a series of symbols; each symbol includes a number of bits; the number of bits is related to the rate of the encoder. The method further includes the step of assuming a probability for each possible initial state of the encoder. The method further includes the step of decoding each symbol of the input bit stream using majority logic, with reference to a trellis structure corresponding to the encoder. The trellis structure represents: a number of states related to the number of memory elements of the encoder; a plurality of transitional branches; and a number of stages related to the number of symbols in the input bit stream.
摘要:
A method of symbol combining and incremental redundancy for link adaptation and code space management was proposed. In order to reduce constraints on the Walsh codes allocation, MCS level change, as well as frame duration change for the initial transmission and re-transmissions, a “rate matching” stage is proposed between the Turbo encoder and block interleaver on the transmitter. In the initial transmission, the Turbo encoded symbols are interleaved with or without any puncturing or repeating (i.e. puncture/repeat factor is set to 1). The coded symbols are also stored in the memory for possible retransmissions. In the re-transmission, the transmitter first determines the number of Walsh codes available for this user and MCS level and frame duration according to the C/I feedback values from MS. The stored coded symbols are then punctured or repeated according to “rate matching factors”. On the receiver side, “rate matching factors” can be derived from the number of code channels, MCS level and frame duration of current re-transmissions and initial transmission. Then, de-puncturing/de-repeating is performed before coded symbol combining. A similar rate matching based IR/symbol combining scheme can be used to design different IR using different rate matching algorithms. It has low implementation complexity and is easily made backward compatible.
摘要:
In wireless system, a group of Base station (BTSs) with smaller footprints have the capability to communicate with each other as well as with the BTSs with relatively larger footprints via wireless air-interfaces. One of such example is coordinated cell systems. A coordinated cell system comprises a group of coordinated cell base stations that have the capability to communicate with each other as well as with relevant macro cell or Pico cell base stations via wireless air-interfaces. Each coordinated cell BTS consists of an over the air control unit in addition to the conventional coordinated cell BTS system. A set of protocols in the form of messages and database are also defined to enable the networking capability. This enables enhancement in performing a variety of tasks by coordinated cell systems, including interference management and coordination, registration and authentication, quality of service coordination, installation and maintenance, location services, etc.
摘要:
Base stations with coordinated multiple air-interface operations are provided. In some embodiments, multi-mode base station (BTS) systems operate with different air-interfaces, functionality, or configurations in a coordinated manner. For example, typical applications of such systems can include Macrocell BTS, Picocell BTS, Femtocell BTS, or Access Point (AP), Set Top Box (STB), or Home Gateway, Hot Spot Devices, User Terminal with the capability to perform required base station operations. In some embodiments, various techniques are provided for system improvements and optimizations via radio resource management, including user and system throughput optimization, QoS improvement, interference management, and various other improvements and optimizations. In some embodiments, a system (e.g., a multi-mode device, such as a base station, a repeater, and/or a terminal) includes a multi-mode communication unit, in which the multi-mode communication unit allocates access for communication using at least two modes; and a processor configured to implement at least in part the multi-mode communications unit. In some embodiments, the at least two modes include one or more of the following: frequency band, protocol standard, duplexing format, broadcast mode (e.g., television broadcast and/or a radio broadcast), and one-way communication mode.
摘要:
Systems and methods for implementing and designing protocols in such communications systems which can be wireless or wired. The systems and methods can include fundamental changes in the traditional protocol design approaches with their constraints of one-to-one mapping in protocols. By doing so, embodiments of the present invention enable an efficient way to design and implement a system to support single or multiple protocols.
摘要:
A Hybrid Automatic Retransmission Request (H-ARQ) technique is provided for Multi-Input Multi-Output (MIMO) systems. The technique changes the basis (V) upon retransmission, which helps reduce the error probability upon retransmission. This basis hopping technique provides for improved performance gain without significant increase in design complexity. In one embodiment, communication device (100) includes a receiver section (114) for receiving an acknowledgment (ACK) or a non-acknowledgment (NACK) signal in response to information transmitted by the transmitter section of the communication device. If a NACK is received, a new basis is selected from a set of basis stored in a basis set unit (110). The new basis that is selected is then used by a linear transformation unit (106) in the retransmission of the information.