摘要:
The present invention is directed to an improved CT detector scintillator to photodiode optical coupling. The CT detector utilizes a controlled air gap between the photodiode array and the scintillator array together with an anti-reflective layer on the scintillator array. To improve the absorption of light at the photodiode array, the photodiode array includes a textured light reception surface. By incorporating a textured layer with the photodiode array, the light collection efficiency of the photodiodes is improved. The textured layer may extend along an x- and/or z-axis and the texturing may be in different forms. For example, the textured layer may include a series of pyramidally-shaped protrusions.
摘要:
The present invention is directed to a CT detector array having uniform cross-talk. Discontinuities in cross-talk between adjacent CT detectors of a CT detector array are minimized by increasing the cross-talk at the boundaries of adjacent CT detectors. Discontinuities throughout a CT detector contribute to artifact presence in a final reconstructed image, therefore, it is preferred that cross-talk throughout the CT detector array be relatively uniform. Reducing the width of reflector material between adjacent CT detectors increases the cross-talk between the CT detectors. This increase in cross-talk offsets the reduced cross-talk that typically occurs between scintillators, optical epoxy layers, and photodiodes at the CT detector interface. Cross-talk may also be increased by reducing the amount of chrome deposited in the reflector between CT detectors or reducing the levels of titanium oxide typically used in reflector layers.
摘要:
The present invention discloses a method of aligning scintillator crystalline structures for computed tomography imaging and a system of use. Crystal seeds are deposited inside a glass melt and are then grown to form a plurality of layer crystallites. While growing the crystallites, a field is applied to align each crystallite structure in a uniform orientation. As a result, the crystallites are configured to reduce light scattering and improve the overall efficiency of the CT system. A CT system is disclosed implementing a scintillator array having a plurality of scintillators, each scintillator being formed of a plurality of uniformly aligned crystallites. Each crystallite includes a receiving surface and an exiting surface configured perpendicular to an x-ray beam. Further, the receiving surface and the exiting surface are connected by a plurality of surface walls arranged parallel to the x-ray beam.
摘要:
One aspect of the present invention is a detector array for a computed tomographic imaging system having a z-direction corresponding to an image slice thickness direction and that is arc-shaped in a direction transverse to the z-direction. The detector array has a plurality of detector modules configured so that the detector array has active regions of differing thicknesses. This detector array embodiment provides an optimized detector array for certain imaging situations, for example, in cardiac imaging applications in which increased coverage is required only in a relatively small central portion of a field of view.
摘要:
The present invention discloses a method of aligning scintillator crystalline structures for computed tomography imaging and a system of use. Crystal seeds are deposited inside a glass melt and are then grown to form a plurality of layer crystallites. While growing the crystallites, a field is applied to align each crystallite structure in a uniform orientation. As a result, the crystallites are configured to reduce light scattering and improve the overall efficiency of the CT system. A CT system is disclosed implementing a scintillator array having a plurality of scintillators, each scintillator being formed of a plurality of uniformly aligned crystallites. Each crystallite includes a receiving surface and an exiting surface configured perpendicular to an x-ray beam. Further, the receiving surface and the exiting surface are connected by a plurality of surface walls arranged parallel to the x-ray beam.
摘要:
The present invention provides a detector for a multi-slice CT system. The detector includes a scintillator for receiving and converting high frequency electromagnetic energy directly to electrons. The detector is further configured to directly conduct the electrons. The detector comprises a compound formed of scintillator bulk and a conducting material capable of converting high frequency energy to electrons as well as conduct electrons. The CT system also provides for a gantry having an output for projecting high frequency electromagnetic energy toward the detector and a data acquisition system for receiving electrons directly from the detector. A method to provide imaging electrons to a CT system is also provided.
摘要:
An x-ray detector includes a two-dimensional array of detector elements that is segmented into regions. The detector elements in each region may be separately gated, or may be gated in blocks of elements to read out data onto a common data line to a region pre-amplifier. A scan sequencer operates the gate control lines to perform a scan in which the spatial resolution of the data read out from each region of the detector array may be separately selected to optimize the x-ray detector for particular clinical applications.
摘要:
The present invention, in one form, is a scatter collimator for a computed tomography system including an x-ray source. The scatter collimator is positioned between a detector array and an object to be imaged. The scatter collimator includes a housing, a plurality of attenuating blades and a plurality of attenuating wires. The blades and wires are mounted to the housing, and oriented substantially perpendicular to each other. Particularly, the blades and wires form a two-dimensional shielding grid. The blades also are oriented so that they are radially and focally aligned with the x-ray source. A detector element of the detector array is secured to the housing so that the blades and wires are between the detector element and the x-ray source. The detector element, in one form, includes a scintillation element which is coated with a light-retaining material.
摘要:
Quantum detection efficiency and spatial resolution in a kinestatic charge detector are improved by utilization of an x-ray transmissive device positioned within a collection volume of a kinestatic charge detector x-ray detection chamber for displacing the charge carrier generating medium within predetermined areas of the chamber. Within the chamber, quantum detection efficiency and spatial resolution are affected by distortion in electric field lines existing between a high voltage anode and a relatively low voltage collector electrode. The distorted field lines cause charge carriers generated in the medium by impinging radiation to impact on either the walls of the chamber or to follow non-linear paths between the point of creation and the collection electrode. By displacing the medium in the chamber in areas having the greatest electric field distortion, the quantum detection efficiency and spatial resolution are improved. In one embodiment an x-ray transmissive device is placed in the chamber adjacent an x-ray emitting window and has a portion extending partially into the space between the anode and collector electrode. In another embodiment, an additional device is positioned in the chamber adjacent a rear wall thereof for displacing the medium in the rear portion of the chamber.
摘要:
In a modular solid state detector of the type including a scintillator and diodes for converting x-ray flux to a measurable electrical signal, the diodes are mounted out of the path of incident x-radiation to minimize noise and to limit degradation. The resulting configuration reduces efficiency because the active diode area is limited and the length of the light path between the scintillator and diode is increased. In order to compensate for that reduction in efficiency, optical potting material is used to join the scintillator to the diodes in order to minimize light attenuation between those elements. In addition, the outer surface of the cured optical potting material is coated with a thin specular layer of silver to keep the light within the optical potting material and thus most efficiently reflected from the scintillator to the diode.