Abstract:
A micro-electro-mechanical system (MEMS) mirror device has a mirror, a frame rotatively coupled to the mirror, and a biaxial actuator rotatively coupled to the frame where the actuator is able to rotate about the rotational axes of the mirror and the frame with the mirror.
Abstract:
A micro-electro-mechanical system (MEMS) mirror device has a mirror, a frame rotatively coupled to the mirror, and a uniaxial actuator rotatively coupled to the frame where the rotational axis of the actuator is offset from the rotational axes of the mirror and the frame. Another MEMS mirror device has a mirror, a frame rotatively coupled to the mirror, and a biaxial actuator rotatively coupled to the frame where the actuator is able to rotate about the rotational axes of the mirror and the frame with the mirror.
Abstract:
A process for constructing a micro-electro-mechanical system (MEMS) device includes etching the topside of a silicon wafer to form a first support layer having asymmetric pads. The backside of the silicon wafer is etched to form a top layer with a mirror, beam structures extending from the mirror, and rotating comb teeth extending from the beam structures. Before or after the backside of the silicon wafer is etched, the topside of the silicon wafer is bonded to a glass wafer that forms a second support layer. Prior to bonding the silicon wafer to the glass wafer, the glass wafer may be etched to form a recess and/or a cavity that accommodates mobile elements in the silicon wafer. Due to the asymmetry of the pads in the first support layer below the rotating comb teeth in the top layer, oscillation can be initiated.
Abstract:
A micro-electro-mechanical system (MEMS) pressure sensor includes a silicon spacer defining an opening, a silicon membrane layer mounted above the spacer, and a silicon sensor layer mounted above the silicon membrane layer. The silicon membrane layer forms a diaphragm opposite of the spacer opening, and a stationary perimeter around the diaphragm and opposite the spacer. The silicon sensor layer includes a movable electrode and a stationary electrode separated by a substantially constant gap and respectively located above the diaphragm and the stationary perimeter of the silicon membrane layer. The movable electrode and the diaphragm move in response to a pressure applied to the diaphragm where an overlap area between sidewall surfaces of the movable and the stationary electrodes create a capacitance proportion to the pressure.
Abstract:
A micro-electro-mechanical system (MEMS) mirror device includes (1) a mirror, (2) spring elements coupled to the mirror, (3) a beam coupled to the group of spring elements, (4) a spring coupled to the beam, and (5) a stationary pad coupled to the spring. The spring elements includes (1) a straight section having a first end coupled to the beam structure, and (2) spring sections having (a) first ends coupled to a second end of the straight section and (b) second ends coupled to the mirror.
Abstract:
A process for constructing a micro-electro-mechanical system (MEMS) device includes etching the topside of a wafer to form a first support layer having short stationary comb teeth extending from one or more support pads. The backside of the wafer is etched to form a top layer with a mirror, beam structures extending from the mirror, long rotating comb teeth extending from the beam structures, and long stationary comb teeth extending from stationary pads. The long rotating comb teeth are interdigitated in-plane with the long stationary comb teeth, and the long rotating comb teeth are interdigitated out-of-plane at their tips with the short stationary comb teeth. Asymmetry in the overlap between the long rotating comb teeth and the short stationary comb teeth allows the rotational direction of the mirror to be determined from capacitance measurements. Furthermore, the short stationary comb teeth can be used to initiate oscillation of the mirror.
Abstract:
A MEMS scanning mirror device includes a scanning mirror, rotational comb teeth, stationary comb teeth, distributed serpentine springs, and anchors. The scanning mirror and the rotational comb teeth are driven by electrostatic force from stationary in-plane and/or out-of-plane teeth. The mirror is attached to the rotational comb structure by multiple support attachments. Multiple serpentine springs serve as the flexible hinges that link the movable structure to the stationary support structure.
Abstract:
In one embodiment of the invention, a MEMS structure includes a first electrode, a second electrode, and a mobile element. The first electrode is coupled to a first voltage source. The second electrode is coupled to a second voltage source. The mobile element includes a third electrode coupled to a third voltage source. A steady voltage difference between the first electrode and the third electrode is used to tune the natural frequency of the structure to a scanning frequency of an application. An oscillating voltage difference between the second electrode and the third electrode at the scanning frequency of the application is used to oscillate the mobile element. In one embodiment, the mobile unit is a mirror.
Abstract:
A MEMS scanning mirror device includes a scanning mirror, rotational comb teeth, stationary comb teeth, distributed serpentine springs, and anchors. The scanning mirror and the rotational comb teeth are driven by electrostatic force from stationary in-plane and/or out-of-plane teeth. The mirror is attached to the rotational comb structure by multiple support attachments. Multiple serpentine springs serve as the flexible hinges that link the movable structure to the stationary support structure.
Abstract:
A micro-electro-mechanical system (MEMS) mirror device includes a mirror coupled to a rotating frame by a first torsional hinge along a rotational axis. The rotating frame has a body that defines a frame opening, and a group of rotational teeth extending from the body. A first bonding pad is located in the frame opening and coupled to the rotating frame by a second torsional hinge along the rotational axis. A second bonding pad is coupled to the rotating frame by a third torsional hinge along the rotational axis.