Abstract:
An integrated circuit has a first component that has a dynamic characteristic that varies among like integrated circuits, for example, among integrated circuits fabricated using the same lithography mask. Operating the first component produces an output that is dependent on the dynamic characteristic of the first component. A digital value associated with the integrated circuit is generated using the output of the first component, and then the generated digital value is used in operation of the integrated circuit.
Abstract:
A method of automatically generating vector sequences for an observability based coverage metric supports design validation. A design validation method for Register Transfer Level (RTL) circuits includes the generation of a tag list. Each tag in the tag list models an error at a location in HDL code at which a variable is assigned a value. Interacting linear and Boolean constraints are generated for the tag, and the set of constraints is solved using an HSAT solver to provide a vector that covers the tag. For each generated vector, tag simulation is performed to determine which others of the tags in the tag list are also covered by that vector. Vectors are generated until all tags have been covered, if possible within predetermined time constraints, thus automatically providing a set of vectors which will propagate errors in the HDL code to an observable output. Performance of the design validation method is enhanced through various heuristics involving path selection and tag magnitude maximization.
Abstract:
An execution migration approach includes bringing the computation to the locus of the data: when a memory instruction requests an address not cached by the current core, the execution context (current program counter, register values, etc.) moves to the core where the data is cached.
Abstract:
A field configurable device, such as an FPGA, supports secure field configuration without using non-volatile storage for cryptographic keys on the device and without requiring a continuous or ongoing power source to maintain a volatile storage on the device. The approach can be used to secure the configuration data such that it can in general be used on a single or a selected set of devices and/or encryption of the configuration data so that the encrypted configuration data can be exposed without compromising information encoded in the configuration data.
Abstract:
An integrated circuit includes a sequence generator configured to generate a series of challenges; a hidden output generator configured to generate a series of hidden outputs, each hidden output a function of a corresponding challenge in the series of challenges; and bit reduction circuitry configured to generate a response sequence including a plurality of response parts, each response part a function of a corresponding plurality of hidden outputs.
Abstract:
An approach to cryptographic security uses a “fuzzy” credential, in contrast to a “hard” credential, to eliminate cryptographic algorithmic repeatability on a device that may be subject to physical attacks. By eliminating repeatability performed at an algorithmic (e.g., gate or software) level, a device inherently lacks one of the fundamental setup assumptions associated with certain classes of side channel, fault injection, timing, and related attacks, thus helps to protect the system against such attacks while preserving the cryptographic security of the system.
Abstract:
An execution migration approach includes bringing the computation to the locus of the data: when a memory instruction requests an address not cached by the current core, the execution context (current program counter, register values, etc.) moves to the core where the data is cached.
Abstract:
An integrated circuit has a first component that has a dynamic characteristic that varies among like integrated circuits, for example, among integrated circuits fabricated using the same lithography mask. Operating the first component produces an output that is dependent on the dynamic characteristic of the first component. A digital value associated with the integrated circuit is generated using the output of the first component, and then the generated digital value is used in operation of the integrated circuit.
Abstract:
A group of devices are fabricated based on a common design, each device having a corresponding plurality of measurable characteristics that is unique in the group to that device, each device having a measurement module for measuring the measurable characteristics. Authentication of one of the group of devices is enabled by selective measurement of one or more of the plurality of measurable characteristics of the device.
Abstract:
An integrated circuit has a first component that has a dynamic characteristic that varies among like integrated circuits, for example, among integrated circuits fabricated using the same lithography mask. Operating the first component produces an output that is dependent on the dynamic characteristic of the first component. A digital value associated with the integrated circuit is generated using the output of the first component, and then the generated digital value is used in operation of the integrated circuit.