Abstract:
An apparatus includes an electromagnetic signal device, a medium, and a sound wave generator. The sound wave generator includes a carbon nanotube structure. The carbon nanotube structure includes one or more drawn carbon nanotube films. The electromagnetic signal device transmits an electromagnetic signal to the carbon nanotube structure. The carbon nanotube structure converts the electromagnetic signal into heat. The heat transfers to the medium and causes a thermoacoustic effect.
Abstract:
A thermoacoustic device. The thermoacoustic includes a carbon nanotube structure. The carbon nanotube structure is at least partly in contact with a liquid medium. The thermoacoustic device is capable of causing a thermoacoustic effect in the liquid medium.
Abstract:
An ultrasonic acoustic device includes a carbon nanotube structure. The carbon nanotube structure is capable of causing a thermoacoustic effect and generating ultrasonic sound wave in liquid medium.
Abstract:
A method of online predicting maintenance of an apparatus is disclosed. Using an optical emission spectroscopy (OES) positioned on the apparatus and the change of emission spectrum intensity detected by the OES in the process, according to the detected results, measuring the parameter in the process, the function relation between the process parameter and spectrum intensity is acquired. A control threshold is decided by the processing requirement to the apparatus. When the parameter exceeds the control threshold, maintenance to the etching apparatus is engaged in order to avoid processing error caused by frequent shutdown or deficient maintenance which is estimated by experience, and hence decreasing the cost and increasing processing efficiency of substrates (such as silicon wafers) without changing apparatus and adding other online sensor, and improving production rate by avoiding waste substrates caused by error processing results. The method is suitable for semiconductor substrate etching maintenance of the apparatus and also other maintenance of the apparatus.
Abstract:
An apparatus includes an electromagnetic signal device, a medium, and a sound wave generator. The sound wave generator includes a carbon nanotube structure. The carbon nanotube structure includes one or more carbon nanotube films. Each carbon nanotube film includes a plurality of carbon nanotubes entangled with each other. The electromagnetic signal device transmits an electromagnetic signal to the carbon nanotube structure. The carbon nanotube structure converts the electromagnetic signal into heat. The heat transfers to the medium and causes a thermoacoustic effect.
Abstract:
An acoustic system includes a sound-electro converting device, a electro-wave converting device, and a sound wave generator. The electro-wave converting device is connected to the sound-electro converting device. The sound wave generator is spaced from the electro-wave converting device and includes a carbon nanotube structure. The sound-electro converting device converts a sound pressure to an electrical signal and transmits the electrical signal to the electro-wave converting device. The electro-wave converting device emits an electromagnetic signal corresponding to the electrical signal and transmits the electromagnetic signal to the carbon nanotube structure. The carbon nanotube structure converts the electromagnetic signal into heat, and the heat transfers to a medium causing a thermoacoustic effect.
Abstract:
A sound wave generator that includes a carbon nanotube structure. The carbon nanotube structure produces sound by means of the thermoacoustic effect.
Abstract:
A field emission electron source having carbon nanotubes includes a CNT string and a conductive base. The CNT string has an end portion and a broken end portion, the end portion is contacted with and electrically connected to the surface of the conductive base. The CNTs at the broken end portion form a tooth-shape structure, wherein some CNTs protruding and higher than the adjacent CNTs. Each protruding CNT functions as an electron emitter. Further, a method for manufacturing a field emission electron source is provided. The field emission efficiency of the field emission electron source is high.
Abstract:
A method for making a field emission cathode includes the steps of: (a) providing a substrate having a first substrate surface and a second substrate surface opposite to the first substrate surface; (b) forming a conductive film on the first substrate surface; (c) forming a catalyst film on the conductive film, the catalyst film including carbonaceous material; (d) flowing a mixture of a carrier gas and a carbon source gas over the catalyst film; (e) focusing a laser beam on the catalyst film and/or on the second substrate surface to locally heat the catalyst to a predetermined reaction temperature; and (f) growing an array of the carbon nanotubes via the catalyst film to form a field emission cathode.
Abstract:
A method for making/growing an array of carbon nanotubes includes the steps of: (a) providing a substrate; (b) forming a light absorption film made of a light absorption material on the substrate; (c) forming a catalyst film on the light absorption film; (d) introducing a mixture of a carrier gas and a carbon source gas by flowing the mixture over/across the catalyst film; (e) focusing a laser beam on the light absorption film to locally heat the catalyst to a predetermined/reaction temperature; and (f) growing an array of the carbon nanotubes from the substrate.