AUTOMATIC PERFORMANCE MONITORING AND HEALTH CHECK OF LEARNING BASED WIRELESS OPTIMIZATION FRAMEWORK

    公开(公告)号:US20190261200A1

    公开(公告)日:2019-08-22

    申请号:US16398990

    申请日:2019-04-30

    Abstract: Network traffic data associated with computer applications is collected based on static policies. First network parameter vectors are generated over a time period. Each network parameter vector of the first network parameter vectors comprises first optimal values, estimated by a Bayesian learning module using a generative model, for network parameters. Second network parameter vectors are generated over the same time period. Each network parameter vector of the second network parameter vectors comprises second optimal values, computed by a best parameter generator through optimizing an objective function, for the network parameters. It is determined whether the first network parameter vectors converge to the second network parameter vectors and whether network parameter optimization for the network parameters is performing normally.

    Automated autonomous system based DNS steering

    公开(公告)号:US11050706B2

    公开(公告)日:2021-06-29

    申请号:US15466664

    申请日:2017-03-22

    Abstract: Network performance data, such as routing trip time between autonomous systems and data centers, is gathered and aggregated to determine optimal mappings of autonomous systems and data centers. Autonomous system based DNS steering may be automated by repeating a life cycle of determining the optimal mappings. Data delivery strategies are applied to a portion of a network to deliver content using the optimal mappings.

    Automatic performance monitoring and health check of learning based wireless optimization framework

    公开(公告)号:US10405208B2

    公开(公告)日:2019-09-03

    申请号:US15803586

    申请日:2017-11-03

    Abstract: Network traffic data associated with computer applications is collected based on static policies. First network parameter vectors are generated over a time period. Each network parameter vector of the first network parameter vectors comprises first optimal values, estimated by a Bayesian learning module using a generative model, for network parameters. Second network parameter vectors are generated over the same time period. Each network parameter vector of the second network parameter vectors comprises second optimal values, computed by a best parameter generator through optimizing an objective function, for the network parameters. It is determined whether the first network parameter vectors converge to the second network parameter vectors and whether network parameter optimization for the network parameters is performing normally.

Patent Agency Ranking